MCT: A Tool for Commenting Programs by
Multimedia Comments

Yiyang Hao*T, Ge Li#*, Lili Mou*!, Lu Zhang*', and Zhi Jin*T*

*Software Institute, School of Electronic Engineering and Computer Science, Peking University
TKey Laboratory of High Confidence Software Technologies (Peking University), Ministry of Education
Beijing 100871, P. R. China
iAcademy of Mathematics and System Science, China Academy of Science, Beijing 100190, P. R. China
felixhao@pku.edu.cn, {lige, moull12, zhanglu, zhijin} @sei.pku.edu.cn

Abstract—Program comments have always been the key to
understanding code. However, typical text comments can easily
become verbose or evasive. Thus sometimes code reviewers find
an audio or video code narration quite helpful. In this paper, we
present our tool, called MCT (Multimedia Commenting Tool),
which is an integrated development environment-based tool that
enables programmers to easily explain their code by voice, video
and mouse movement in the form of comments. With this tool,
programmers can replay the audio or video when they feel like.

A demonstration video can be accessed at:
http://www.youtube.com/watch?v=tHEHqZme4VE

I. INTRODUCTION

During the development of a software system, leaving
messages to explain the code is as important as coding itself.
Messages play a vital role in software reuse and maintenance.
It is very common that some engineers have to maintain code
or projects written by other people [1]. Mostly, this situation is
caused by developers’ departure or their job has been changed.

The most used way to leave messages is writing comments
and documents. Typical comments are based on texts. They are
often inserted before class declaration and method declaration,
and sometimes at the end of a line of code [2]. Comments
contain much information about the functionality of a cer-
tain code block, and the programmer’s ideas implied in the
program. However, writing good comments is by no means
easy. Inexperienced programmers can easily write a verbose
comment by talking about everything [3][4] or an evasive
comment by providing insufficient or irrelevant information.
Sometimes, some programmers just feel lazy and leave blanks.
Numerous guidelines have been proposed to help programmers
write good comments [5][6].

As for documents, such as Javadoc!, they provide sound
and enriched information about software projects. For ex-
ample, Javadoc supports simple formats and embedded URL
resources. However, a disadvantage of documents is that they
are too formal and often take much time to construct. On
the other hand, when reading the documents, people are
sometimes overwhelmed by the size, so they still do not have
a brief but clear idea of the whole project. More importantly,

#Corresponding author.
Uhttp://www.oracle.com/technetwork/java/javase/documentation/index-jsp-
135444 html

978-1-4673-3076-3/13/$31.00 © 2013 IEEE

1339

targeted readers of documents are the users of this project, not
programmers [7].

Different from traditional text-based comments and docu-
ments, an audio or video clip will help a lot in code under-
standing. It is natural that people learn faster with multimedia
information [8]. In addition, written language differs from oral
language in many ways so that the audience of an audio or a
video clip can perceive much more information beyond words
[9]. For example, the tone with which the speaker says may
indicate the really important code piece from unimportant
ones. The speaker can even use gestures or teaching aid
facilities during the talk. Some people are visual thinkers, and
they prefer looking at a workflow, a database diagram or a
UML graph. So it is more convenient if the original author
has commented his/her code in the form of an audio or video
clip in addition to text comments.

To help programmers who want audio or video comments
in their source code, we created Multimedia Commenting
Tool (MCT), which is a plug-in on integrated development
environment (IDE). This is a new tool designed for software
developers to record or replay multimedia comments. MCT
supports the following two forms of multimedia comments:

+ Multimedia code narration. Using MCT, programmers
can record a multimedia narration, where they explain
their code by audio or video. Programmers can use
gestures or equipment, such as a small blackboard to
draw a flow chart, to help them during the narration.
Therefore, code narration is a quick way for programmers
to understand the code.

« Embedded multimedia resources. MCT also allows to
embed existing multimedia resources (e.g., images, audio
clips and video clips) into source code. Voice can also be
translated into text by MCT. Code reviewers can watch or
listen to embedded multimedia resources inside the IDE.

As far as we are aware, MCT is the first tool that introduces
the concept of multimedia comments and helps manipulate
them.

II. OVERVIEW

MCT is an IDE plug-in to create, modify and play mul-
timedia comments. The main interface of MCT is shown in
Fig. 1. Multimedia comments can be created in two forms:

ICSE 2013, San Francisco, CA, USA
Formal Demonstrations

by recording a code narration or by embedding existing
multimedia resources.

To comment by multimedia code narration, programmers
can provide either an audio or a video explanation to their
code. MCT can record videos from cameras and audio from
microphones. At the same time, MCT also keeps track of
mouse movements so as to retain correspondence between
code and multimedia contents. Multimedia code narrations can
be played sequentially, or can be triggered by the related code
lines or variables.

To comment code by embedded multimedia resources,
programmers can insert multimedia files, i.e., images, audio
clips and video clips. A descriptor, indicating an embedded
multimedia resource, is then inserted to the corresponding line
in the source file. Clicking the descriptor, code reviewers can
listen to the audio, or watch images and videos in a pop-up
window.

Both forms of multimedia comments can be created during
the development and updated when code changes. MCT will
automatically keep consistency between multimedia contents
and lines of the code.

By using MCT, code reviewers may easily understand the
whole source file and any detailed code snippets.

cltleloe

Fig. 1. Overview of Multimedia Commenting Tool (MCT).

II1. DEMO WALK-THROUGH

In this section we introduce Jane, a fictitious character, who
is a software developer using MCT. She is moving to a new
software project due to the departure of a previous engineer.
Following Jane, we can see how MCT helps programmers.

A. Creating Multimedia Comments

Before the project rotation, Jane has to leave some messages
to explain her work so that other developers can easily
understand her code and continue the project. She is creating
multimedia comments with MCT.

1) Commenting with Multimedia Code Narrations: Jane
wants to give a video explanation to her code. She clicks
on the “start recording” button and starts narrating while she
is coding. When finished, she clicks on the “start recording”
button again. The video as well as her mouse movement is
saved in a resource folder alongside the source file (Fig. 2).

After development, Jane feels the need to comment a
detailed algorithm implemented in her code. She clicks on

© Java - testProject/sre/VoiceCode java - Eclipse SOK I WD

Fle Edit Source Refactor Navigate Search Project RichComments VoiceCode Run

Window Help.

G- EEs (s 0@ -7 (% -0-a- [N[&~ - [$PBEl|F - Cc -
= Explorer 5% fN= O[] “VoiceCodejavs 5 | [1) Dijkstrajava (1) QuickSortjave =g
S ® | Tn
click record : =
button ||)
© ® write your code
click again and start narrating

when you finish

Fig. 2. Recording narration while coding.

the “start recording” button and starts narrating the algorithm.
While recording, she uses her mouse to select the code
snippets to indicate where she is narrating (Fig. 3). By doing
so, the code reviewers can easily follow her narration. She also
utilizes a blackboard beside her to draw a structure graph of
the project with gestures. On finishing recording, she clicks on
the “start recording” button again and the multimedia comment
is saved.

B e

est
File Edit Source Refac

tProject/s

Navi Project RichComments VoiceCode Run Window Help
it (=37 |6 [H-0-Q- [N [® v [P@e 8-~ ar - Q
[% Package Explorer 2% = 8 [7) VoiceCodejava 52 ' [J) Dijkstrajava [3) QuickSort java =8
et ®
click record e,
o button ® selec
click again e expain and start

narrating

al String PLUGIN_ID = “cn.edu.pku.voiceCode"; //$NON-N

when you finish

Fig. 3. Recording a multimedia narration of the code.

2) Adding Embedded Multimedia Resources: Jane feels it is
not enough with only narrations; she wants to present the data
structure of her program. She clicks on the “insert” button,
inputs the title of the graph as “data structure” and chooses
the type as “image” (Fig. 4). She can either choose a local file
or use a URL to download an existing image on the web. This
feature is used generally when a visual or acoustic description
or example is needed, e.g., describing a complex algorithm.

Ol¥le/00 i3 -0-
'E]nsertRCDescriptor {‘:' El i:h‘i

Input Values
Title:
Type:
Location: file;//As\runtime-EclipseApplica

Visualization_of_Quick_sort.flv

video

Ok] [Open Local File...]

| T S

Fig. 4. Adding and embedded multimedia resource.

3) Writing Text Comments by Voice: Another feature of
MCT is voice commenting, which has been thoroughly dis-
cussed by Andrew Begel [10]. MCT recognizes Jane’s voice
into plain texts and adds it as a comment in her code. Jane
needs to click on the “voice comment” button and speak to
her microphone. The voice commenting window will pop up
and display what MCT has heard. When she is done, Jane

1340

clicks on the button again and what she says becomes text
comments.

4) Comments vs. Documents: Generally, comments help
programmers understand source code and are strongly related
to the structure of source files [2]. It is not recommended
to leave messages about the whole subsystem or parts of it
which consist of several source files in comments. MCT does
not support Jane to leave cross-file messages, because frequent
code updates make such messages obsolete easily.

B. Understanding code with Multimedia Comments

Jane is now in her new software project. She has to
begin working as soon as possible after understanding the
requirement as well as the detailed source code.

1) Watching the Whole Multimedia Code Narration: Jane
opens the source file. She simply clicks on the “play” button
and the whole code narration is played. A window pops up in
the IDE and she begins watching the authors narrating their
code.

When the video is playing, the original author’s mouse
movement reappears in the editor. The editor automatically
scrolls down or up to make the current selection visible. Jane
finds it quite easy to catch up to the narration following the
mouse movement.

When coming to a particular function, Jane hopes to have
a detailed look at the work flow so that she can understand
it better. The narrator takes out a small blackboard and starts
drawing and explaining the work flow diagram (Fig. 5).

P e ey —

Fig. 5. Watching the original author’s narrating of a flow chart.

2) Retrieving Multimedia Code Narration Segments: When
Jane starts to manipulate the code, she needs a narration
over a certain code segment. With MCT, multimedia code
narration segments can be retrieved either by code line or by
method/variable identifier.

Jane clicks on the “toggle markers” button and all com-
mented lines are highlighted. She moves her mouse to that
line, and clicks on the “seek to current line” button (Fig. 6).
The author immediately appears and begins narrating that part.

If Jane needs to know all about a method or a variable,
she can select the identifier of that method or variable, and
clicks on the “seek for current symbol” button. All the
lines containing the identifier are highlighted. All narration
segments about the identifier are then played. Now Jane knows
all about the variable/method, including the declaration and all
its usages.

P T ———————

e .
_ the narration begins " -5
_at the top of the

le, but seeking to

" current line makes
the narration start

from selected line

Fig. 6. Retrieving narrations segments by code line.

3) Playing Embedded Multimedia Resources: Another type
of multimedia comments is embedded multimedia resources.
A descriptor is embedded in the source file indicating a
multimedia resource. These descriptors are in the form of text
comment themselves. When Jane needs to play any multimedia
resource, she can click on the descriptor. For an audio clip,
it will be played directly; for other resources, a new window
pops up where Jane can watch images, videos or something
else.

C. Updating Code and Multimedia Comments

Jane soon understands the new project, and now she finds
a bug in the source code. She starts worrying “what happens
if I modify the code?” Fortunately, MCT automatically retains
consistency between code and multimedia comments. Details
of this feature are described in Implementation section.

Code changes include code insertion, deletion and modi-
fication, a combination of deletion and insertion. If a line of
code is deleted or modified, it becomes no longer available and
the multimedia comment on this line should be skipped. The
positions in recorded mouse movements should be adjusted
accordingly or ignored when code changes.

BrOvQr v O (™[R 40 Tylwx N

7] VoiceCodejova |

[J] Dijlatrajava

(1] QuickSort java

Commented lines
become
highlighted

String PLUGIN_TD = "cn.edu. pku. voi

public class VolceCode {

lic

bl
b
b

Fig. 7. Toggle multimedia comments markers.

By giving Jane the opportunity to watch and make multime-
dia comments, MCT makes it possible for an engineer to leave
a multimedia narration on his code for Jane to watch. Reading
the whole code may take at least 10 minutes for Jane and
Jane may get stuck on some unimportant details in this code.
But a three-minutes-long video tour on this class is enough

1341

to understand how this class works. In addition to that, Jane
can take advantage of MCT for her own sake by adding a
video narration to her code, so she can just leave critical text
comments and let the video do the rest.

When a code narration is already contained in a source file,
Jane can replace it by recording another one. It is hard to
edit existing code narrations with an IDE plugin efficiently for
obvious reasons. However, she can use any external video or
audio editors when applying small modifications to code narra-
tion. We may implement features to separate the existing video
or audio into several clips by recognizing spaces between
sentences and allow users to modify it just like modifying
text comment in the future.

IV. IMPLEMENTATION

MCT is realized as an Eclipse plugin (tested on INDIGO
and JUNO). A multimedia comment basically contains an
audio or a video clip, a file recording mouse movements,
a copy of the source file when the comment is created and
optionally extra files due to code changes.

When a user clicks on the “start recording” button, we first
check whether there are any multimedia comments already. If
so, the newly recorded comment will be appended to the tail
of the old ones. If not, a new comment will be created. We
record mouse movements and audio with a microphone and
video with a camera. The user can choose to use audio or video
feature or not to control source code size. The tool is still a
prototype and only supports the .wav audio format and the .avi
video format. Any code modifications during the recording are
not encouraged and may cause uncertain consequences.

When a user clicks on the “replay” button, we load the
recorded mouse movement into memory and compare between
the currently opened file and the original one when the
comments are recorded. The differences tell the MCT which
line in one file corresponds to which line in another. Therefore,
MCT would not replay a comment written for deleted code.
Then the recorded mouse movements are performed and audio
or video clips are played. If a video clip is available, a view
window will show up to display the video.

Consistency between multimedia comments and code is
maintained in the following way: A file difference comparison
will be done each time a multimedia comment is loaded into
memory. MCT detects whether a line is removed or moved
based on the differences, e.g., deleted lines and added lines.
If a line is moved during code maintenance due to code
insertion or deletion, mouse movements will be adjusted to
fit the corresponding lines. If a line is deleted, corresponding
mouse movements will be ignored but the audio or video clip
related to that line will be remained because the multimedia
clip may still be useful. Newly added audio or video clips are
appended at the end of the existed clips.

MCT uses CloudGarden TalkingJava SDK? for speech
recognition as an implementation of Java Speech API’. MCT

’Talkinglava SDK with Java API
http://www.cloudgarden.com/JSAPI/

3Java Speech API - http://en.wikipedia.org/wiki/Java_Speech_APL

Speech implementation,

will automatically detect an installed English speech recogni-
tion engine. If there is none available, the user will be warned
and may not use the speech comment input feature.
MCT uses VLC player* as our video decoder, so users may
need to install a free VLC player to experience video features.
The MCT plug-in can be downloaded at
http://www.sei.pku.edu.cn/~lige/MCT/plugins.7z

V. DISCUSSION

In this paper, we introduce the idea of multimedia com-
ments and present an IDE plug-in named MCT, Multimedia
Commenting Tool. Using MCT, programmers can record an
audio or video code narration to explain their code. They can
also insert embedded multimedia resources into source files.
The correspondence between code and multimedia comments
will be retained by MCT automatically.

In the future, we will conduct a survey on software devel-
opers in indutry to see how MCT works in real development.
We will deploy our system to university students and teaching
assistants to see how MCT can help in education.

VI. ACKNOWLEDGMENT

This research is sponsored by the National Basic Research
Program of China (973) No. 2011CB302704, the National
Natural Science Foundation of China No. 61232015, the
National 863 Program of China No. 2012AA011202, and the
Science Fund for Creative Research Groups of China No.
61121063.

REFERENCES

[1] T. Pearse and P. Oman, “Maintainability measurements on industrial
source code maintenance activities,” in Software Maintenance, 1995.
Proceedings., International Conference on, 1995, pp. 295-303.

[2] D. Haouari, H. Sahraoui, and P. Langlais, “How good is your comment?
a study of comments in java programs,” in Empirical Software Engineer-
ing and Measurement (ESEM), 2011 International Symposium on, 2011,
pp. 137-146.

[3] A. Carbone, J. Hurst, I. Mitchell, and D. Gunstone, “Principles for de-
signing programming exercises to minimise poor learning behaviours in
students,” in Proceedings of the Australasian conference on Computing
education, ser. ACSE 00, pp. 26-33.

[4] S. P. R. R. Douglas Riecken, Jurgen Koenemann-Belliveau, “What do
expert programmers communicate by means of descriptive comment-
ing?” in Empirical Studies of Programmers: Fourth Workshop, 1991, p.
177C195.

[5] J. Vogel, “Six ways to write more comprehensible code,”
http://www.ibm.com/developerworks/linux/library/l-clear-code/.

[6] Javarevisited, “10 best practices to follow while writing code com-
ments,” http://javarevisited.blogspot.com/2011/08/code-comments-java-
best-practices.html.

[7]1 D. Kramer, “Api documentation from source code comments: a case
study of javadoc,” in Proceedings of the 17th annual international
conference on Computer documentation, ser. SIGDOC 99, pp. 147-
153.

[8] L. J. Najjar, “Multimedia information and learning,” Educational Mul-
timedia and Hypermedia, pp. 129-150, 1996.

[9] “Differential effects of home literacy experiences on the development of

oral and written language,” Reading Research Quarterly, vol. 33, no. 1,

1998.

A. Begel, “Program commenting by voice,”

http://www.cs.berkeley.edu/ abegel/cs294-1/voicecomments.pdf, 2002.

(10]

4VLC media player - http://www.videolan.org/vlc/index html.

1342

