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Abstract

Using neural networks to generate replies in human-computer dialogue systems is attracting in-
creasing attention over the past few years. However, the performance is not satisfactory: the
neural network tends to generate safe, universally relevant replies which carry little meaning. In
this paper, we propose a content-introducing approach to neural network-based generative dia-
logue systems. We first use pointwise mutual information (PMI) to predict a noun as a keyword,
reflecting the main gist of the reply. We then propose seq2BF, a “sequence to backward and
forward sequences” model, which generates a reply containing the given keyword. Experimental
results show that our approach significantly outperforms traditional sequence-to-sequence mod-
els in terms of human evaluation and the entropy measure, and that the predicted keyword can
appear at an appropriate position in the reply.

1 Introduction

Automatic human-computer conversation is a hot research topic in natural language processing (NLP).
In past decades, researchers have developed various rule- or template-based systems, which are typically
in vertical domains, e.g., transportation (Ferguson et al., 1996) and education (Graesser et al., 2005). In
the open domain, data-driven approaches play an important role, because the diversity and uncertainty
make it virtually impossible for humans to design rules or templates. Isbell et al. (2000) and Wang et al.
(2013) use information retrieval methods to search for a reply from a pre-constructed database; Ritter et
al. (2011) formalize conversation as a statistical machine translation task.

Recently, the renewed prosperity of neural networks brings new opportunities to open-domain conver-
sation (Vinyals and Le, 2015; Shang et al., 2015; Serban et al., 2016a; Li et al., 2016a). In these studies,
researchers leverage sequence-to-sequence (seq2seq) models to encode a query (user-issued utterance)
as a vector and to decode the vector into a reply. In both encoders and decoders, an RNN keeps one or a
few hidden layers; at each time step, it reads a word and changes its state accordingly. RNNs are believed
to be well capable of modeling word sequences, benefiting machine translation (Sutskever et al., 2014),
abstractive summarization (Rush et al., 2015) and other tasks of natural language generation. Contrary to
retrieval methods, neural network-based conversation systems are generative in that they can synthesize
new utterances; results in the literature also show the superiority of seq2seq to phrase-based machine
translation for dialogue systems (Shang et al., 2015). In our study, we focus on neural network-based
generative short-text conversation, where we do not consider context information, following Wang et al.
(2013) and Shang et al. (2015).

Despite these, neural networks’ performance is far from satisfactory in human-computer conversation.
A notorious problem is the universal reply: the RNN prefers to generate safe, universally relevant sen-
tences with little meaning, e.g., “something” (Serban et al., 2016a) and “I don’t know” (Li et al., 2016a).
One problem may lie in the objective of decoding. If we choose a reply with the maximal estimated
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probability (either greedily or with beam search), it is probable to obtain such universal replies, because
they do appear frequently in the training set. Another potential problem is that, the query may not con-
vey sufficient information for the reply, and thus the encoder in seq2seq is less likely to obtain an
informative enough vector for decoding.

In this paper, we propose a content-introducing approach to generative short-text conversation sys-
tems, where a reply is generated in a two-step fashion: (1) First, we predict a keyword, that is, a noun
reflecting the main gist of the reply. This step does not capture complicated semantic and syntactic as-
pects of natural language, but estimates a keyword with the highest pointwise mutual information against
query words. The keyword candidates are further restricted to nouns, which are not as probable as uni-
versal words (e.g., I and you), but can introduce substantial content to reply generation. (2) We then
use a modified encoder-decoder model to synthesize a sentence containing the keyword. In traditional
seq2seq, the decoder generates the reply from the first word to the last in sequence, which prevents
introducing certain content (i.e., a given word) to the reply. To tackle this problem, we propose seq2BF,
a novel “sequence to backward and forward sequences” model, based on our previous work of backward
and forward language modeling (Mou et al., 2015). The seq2BF model decodes a reply starting from
a given word, and generates the remaining previous and future words subsequently. In this way, the
predicted keyword can appear at an arbitrary position in the generated reply.

The rest of this paper is organized as follows. Section 2 describes the proposed approach; Section 3
presents experimental results. Section 4 briefly reviews related work in the literature. Finally we con-
clude our paper and discuss future work in Section 5.

2 Our Approach

In this section, we present our content-introducing generative dialogue system in detail. Subsection 2.1
provides an overview of our approach, Subsection 2.2 introduces the keyword predictor, and Subsec-
tion 2.3 elaborates the proposed seq2BF model. We describe training methods in Subsection 2.4.

2.1 Overview

Figure 1 depicts the overall architecture of our approach, which comprises two main steps:

Step I: We first use PMI to predict a keyword for the reply, as shown in Figure 1a.

Step II: After keyword prediction, we generate a reply conditioned on the keyword as well as the query.
More specifically, we propose the seq2BF model, which generates the backward half of the se-
quence (Figure 1b) and then the forward half (Figure 1c).

Notice that, the RNNs in Step II do not share parameters (indicated by different colors in the figure)
because they differ significantly from each other. Moreover, the encoder and decoder do not share param-
eters either, which is standard in seq2seq. For clarity, we do not assign different colors for encoders
and decoders, but separate them with a long arrow in Figures 1b and 1c.

2.2 Keyword Prediction

In this step, we use pointwise mutual information (PMI) to predict a keyword for the reply. We leverage
such surface statistics because this step outputs a single keyword, which does not capture complicated
syntax and semantics of queries and replies. Our goal of content introducing is to suggest a word that is
especially suited to the query, instead of predicting a most likely (common) word. Hence, the pointwise
mutual information is an appropriate statistic for keyword prediction.

Formally, we compute PMI of a query word wq and a reply word wr using a large training corpus by

PMI(wq, wr) = log
p(wq, wr)
p(wq)p(wr)

= log
p(wq|wr)
p(wq)

(1)
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Figure 1: An overview of our content-introducing approach to generative dialogue systems.

When predicting, we choose the keyword w∗r with the highest PMI score against query words
wq1 , · · ·wqn , i.e., w∗r = argmaxwr

PMI(wq1 · · ·wqn , wr), where

PMI(wq1 · · ·wqn , wr) = log
p(wq1 · · ·wqn |wr)
p(wq1 · · ·wqn)

(2)

≈ log
∏n

i=1 p(wqi |wr)∏n
i=1 p(wqi)

=
n∑

i=1

log
p(wqi |wr)
p(wqi)

=
n∑

i=1

PMI(wqi , wr) (3)

The approximation is due to the independency assumptions of both the prior distribution p(wqi) and
posterior distribution p(wqi |wr). While the two assumptions may not be true, we use them in a pragmatic
way so that the word-level PMI is additive for a whole utterance. Experiments show that this treatment
generally works well.

Different from choosing the most likely word, PMI penalizes a common word by dividing its prior
probability; hence, PMI prefers a word that is most “mutually informative” with the query. Moreover,
we manually restrict keyword candidates to nouns, so that this step can introduce substantial content to
reply generation, which will be discussed in the next part.

2.3 The seq2BF Model
To insert the predicted keyword into sequence generation, we cannot use the traditional seq2seqmodel.
In existing approaches, we usually decompose the probability of an output sentence r = r1r2 · · · rm
given an input sentence q = q1q2 · · · qn by

p(r1, · · · , rm|q) = p(r1|q)p(r2|r1, q) · · · p(rm|r1 · · · rm−1, q) =
m∏

i=1

p(ri|r1 · · · ri−1, q) (4)

The output sentence is thus predicted in sequence from r1 up to rm either greedily or with beam search.
I personally believe such decomposition is mainly inspired by the observation that humans always say a
sentence from the beginning to the end.

However, in our content-introducing approach to generative dialogue systems, the predicted keyword
could appear at the beginning (r1), the middle (r2 to rm−1), or the end (rm) of the reply. It is then natural
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to decompose the probability starting from the given word. In particular, the predicted keyword k splits
a reply into two (sub-)sequences:

Backward sequence: rr−1, · · · , r1
Forward sequence: rk+1, · · · , rm

and the joint probability of remaining words can be written as

p

(
rk−1 · · · r1
rk+1 · · · rm

∣∣∣∣∣rk, q
)

=
k−1∏
i=1

p(bw)(rk−i|rk, q, ·)
m−k∏
i=1

p(fw)(rk+i|rk, q, ·) (5)

where p(- - -|rk, q) refers to the probability of the backward and forward subsequences given the split
word rk and an encoded query q. Notice that both the backward and forward sequence generators include
a wildcard allowing rich inner-subsequence and/or inter-subsequence dependencies. In our previous
study of backward-and-forward (B/F) language modeling (Mou et al., 2015), we propose three variants:
(1) sep-B/F: The backward and forward sequences are generated separately. (2) syn-B/F: The backward
and forward sequences are generated synchronously using a single RNN, two output layers at each time
step for the two sequences. (3) asyn-B/F: The two sequences are generated asynchronously, that is, we
first generate the backward “half” sequence, conditioned on which we then generate the forward “half.”
Our previous experiments show the asyn-B/F is the most natural way of modeling backward and forward
sequences, and thus we adopt this variant in seq2BF.

Specifically, our seq2BF model works as follows. A seq2seq neural network encodes a query
and decodes a “half” reply, that is, the first set of factors in Equation 5 becomes p(bw)(rk−i|rk, q, ·) =
p(bw)(rk−i|rk · · · rk−i+1, q), where 1 ≤ i ≤ k − 1. The decoder here outputs words in a reversed order
from rk−1, rk−2 to r1, so that the reversed “half” sequence is fluent with respect to the given word, at
least from a mathematical perspective. (Please see Figure 1b.)

Then another seq2seq model encodes the query again, but decodes the entire reply, provided that the
first half of the reply is given (Figure 1c), i.e., p(fw)(rk+i|rk, q, ·) = p(fw)(rk+i|r1 · · · rk · · · rk+i−1, q),
(1 ≤ i ≤ m−k). Here, the forward generator is aware of the backward half sequence r1 · · · rk−1, where
the word order is reversed again, so that they are in a normal order for fluent forward generation.

In both backward and forward seq2seq models, we use RNNs with gated recurrent units (GRUs) for
information processing (Cho et al., 2014), given by

rt = σ(Wrwt + Urht−1 + br) (6)

zt = σ(Wzwt + Urht−1 + bz) (7)

h̃t = tanh
(
Whwt + Uh(r ◦ ht−1) + bh

)
(8)

ht = (1− zt) ◦ ht−1 + zt ◦ h̃t (9)

where W ’s and U ’s are weights and b’s are bias terms. wt is the word embedding; ht is the hidden state
at the time step t. “◦” denotes element-wise product.

2.4 Model Training
Training (i.e., parameter estimation) is always a most important thing in the neural network regime, and
oftentimes, problems arise when we prepare the dataset.

Fortunately, the seq2BF model can be trained without additional labels. We randomly sample a
word in a reply as the split word, take the first half, and reverse its word order; in this way, we obtain
the training data for the backward sequence generator. The forward sequence generator is essentially a
seq2seq encoder and decoder from queries to replies. The difference between the pure seq2seq and
the forward generator of seq2BF lies in the inference stage: in our scenario, we ignore the query-reply
seq2seq generator’s output at the beginning steps, but feed it with the “half” reply obtained by our
backward sequence generator as well as the predicted keyword (red and green words in Figure 1c); then
we let the seq2seq model generate remaining future words (blue words in Figure 1c).
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It should be emphasized that the backward sequence generator requires “half” replies starting from the
split word as training data, and that we cannot train the model with a full reversed sentence. Otherwise,
the backward part will undesirably generate an entire reversed reply, and the forward part cannot add
much to it.

3 Experiments

3.1 Dataset
We evaluated our approach on a Chinese dataset of human conversation crawled from the Baidu Tieba1

forum. We used 500,000 query-reply pairs to train the seq2BF model. We had another unseen 2000
and 27,871 samples for validation and testing, respectively. To obtain PMI statistics in the first step
(Figure 1a) of our method, we use a much larger dataset containing 100M query-reply pairs.

Chinese language is different from English in that a Chinese character carries more semantics than
an alphabet. For example, the characters黑 and板 mean “black” and “board” in English, respectively;
the term 黑板 means “blackboard.” Because we have far more Chinese terms than English words, our
seq2BF is trained in the character level out of efficiency concerns. But we train the keyword predictor
with noun phrases (Chinese terms), by noticing that blackboard is different from board, despite some
subtle relations. Fortunately, the two granularities can be integrated together straightforwardly: during
backward sequence generation, we only need to condition the model on the character sequence in the
key term instead of a single keyword, that is, we have several green inputs in Figure 1b. In our study, we
kept 2.5k noun terms as candidate keywords and 4k characters for seq2BF generation.

3.2 Hyperparameters
In our experiments, word embeddings and recurrent layers were 500d. We used rmsprop to optimize all
parameters except embeddings, with initial weights uniformly sampled from [−.08, .08], initial learning
rate 0.002, moving average decay 0.99, and a damping term ε = 10−8. Because word embeddings
are sparse in use (Peng et al., 2015), we optimized embeddings asynchronously by stochastic gradient
descent with the learning rate divided by

√
ε. We set the mini-batch size to 50. These values were mostly

chosen empirically by following Karpathy et al. (2015) and Mou et al. (2015); they generally work well
in our scenarios. We did not tune the hyperparameters in this paper, but are willing to explore their roles
in dialogue generation as future work.

The validation set (containing 2k query-reply samples) was used for early stop only. We chose the
parameters yielding the highest character-level BLEU-2 score on our validation set.

3.3 Performance
We evaluated our results in terms of the following criteria:

• Human Evaluation. We had six volunteers2 to annotate the results of our content-introducing
seq2BF and baselines. To ensure the quality of human evaluation, we randomly sampled 200
queries and replies in the test set. The samples and volunteers were further split into two equal-
sized groups of different annotation protocols:

– Pointwise annotation. The volunteers were asked to annotate a score indicating the appropri-
ateness of a reply to a given query: 0 = bad reply, 2 = good reply, and 1 = borderline.

– Pairwise annotation. Given a certain query, the volunteers were asked to judge whether pure
seq2seq is better than, equal to, or worse than seq2BF (with content introducing). If they
could not understand both replies, they were asked to choose “equal.”

All our human evaluation were conducted in a random, blind fashion, i.e., we randomly shuffled the
samples and volunteers did not know which system generated a particular reply. Notice that we did
not define what a “good” or “bad” reply is; otherwise, the annotation may be biased towards certain
systems. Rather, annotators had their own subjective discretion. While criteria may differ from

1http://tieba.baidu.com
2All volunteers are well-educated native speakers of Chinese and have received a Bachelor’s degree or above.
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(a)
Method PointHuman Length Entropy
seq2seq 0.58 5.61 6.960
seq2BF− 0.46 5.60 6.971
seq2BF+ 0.67 5.31 9.139
Groundtruth – 9.19 8.832

(b)
PairHuman

Method Wins Ties Loses
seq2seq 24.7 26.0 49.3
seq2BF+ 49.3 26.0 24.7

Table 1: The performance of our content-introducing seq2BF (denoted as seq2BF+) dialogue system
in comparison with pure seq2seq and seq2BF without predicted keywords (seq2BF−). PointHu-
man: Pointwise human evaluation. (Annotator agreement: std=0.33, Fleiss’ κ=0.27.) PairHuman:
Pairwise human evaluation, which shows the percentage at which a system wins, loses, or ties in com-
parison with the other (κ=0.29).

person to person, the ranking of average scores reflects the comparison of different dialog systems.
(In our study, the ranking is consistent among all six annotators.)

• Length. The length of an utterance is an objective, surface metric that reflects the substance of a
generated reply.

• Entropy. Entropy is another objective metric, which shows the serendipity of a reply by measuring
the amount of information contained in the utterance. We computed the average character-level
entropy, given by

− 1
|R|

∑
w∈R

log2 p(w) (10)

where R refers to all replies, |R| is the number of words in all replies, and p(·) is the unigram
probability of a character in the training set.

The latter two metrics are “intrinsic,” by which we mean no reference (groundtruth reply) is needed to
compute the metric. They are used in Serban et al. (2016b).3 In our experiments, objective metrics were
assessed with all test samples.

We do not include BLEU scores as our evaluation criteria, which are used in Li et al. (2016a). As a
pilot study, we also asked two volunteers to write their own replies to 50+ queries. One obtained 1.69
BLEU-4 score. (The result is lower than 1.74 obtained by an automatic dialogue system in Li et al.
(2016a); this may be caused by different datasets and languages.) What surprises us is that the other
volunteer obtained 0 BLEU-2 score, indicating that no bi-gram overlaps between his replies and the
references. This result provides evidence of the diversity among human replies, and thus we abandoned
BLEU scores as evaluation criteria. We reported this case study in our paper so as to shed more light on
the research of evaluation metrics in dialogue systems.

Table 1 compares our content-introducing seq2BF with the seq2seq baseline. Also included is the
seq2BF model without content introducing, that is, we slacked the keyword constraint in the backward
sequence generator (Figure 1b), and let it generate a reversed half reply freely.

As seen in Table 1a, the content-introducing seq2BF model yields the highest pointwise human an-
notation result. For seq2BF without content introducing, we obtain low scores, showing that artificially
splitting a sequence into two parts itself is not a fancy way of modeling natural language sentences. How-
ever, given a keyword predicted by PMI statistics, the backward and forward sequence generation can
significantly improve the dialogue system in comparison with pure seq2seq. In the pairwise annota-
tion protocol, the content-introducing seq2BF model also outperforms traditional seq2seq to a large
extent. We computed standard deviation (0.33) and discrete-class Fleiss’ κ scores (0.27–0.29), showing
fair annotator agreement (Fleiss, 1971). While the agreement is comparable to previous results, e.g.,
0.2–0.4 reported in Shang et al. (2015), we find the disagreement mainly comes from the discretion of

3The entropy equation in Serban et al. (2016b, v3) has a minor error. We confirmed this with Serban via personal emails.
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Chinese English (translated)
Query 李有男友公开过了 It’s known that Li† has a boyfriend.

Grountruth 都已经分了之前李的贴吧都在讨论了 Broken up. There’s discussion in her Tieba.‡

seq2seq 我是男的 I am a male
seq2BF− 我的男友 My boyfriend
seq2BF+ 有绯绯绯闻闻闻男友 Has a rumored boyfriend

Query 人大复试飘过 Passed second-round exam of Renming Univ.
Grountruth 这么牛，什么专业 Cool, what’s your major
seq2seq 我也是！ Me too!
seq2BF− 我也是！ Me too!
seq2BF+ 分分分数数数是什么 What is your score

Query 挺漂亮的祝福祝福 So beautiful, congratulations
Grountruth 下手慢了哈。现在 You’re late till now
seq2seq 谢谢 Thank you
seq2BF− 是的，谢谢 Yes, thank you
seq2BF+ 谢谢夸夸夸奖奖奖 Thank you for praising

Query 我要换头像了！ Want to change a photo
Grountruth 打算换成什么啊～ What do you like...
seq2seq 我是你的头像 I’m in your photo
seq2BF− 我是你的头像 I’m in your photo
seq2BF+ 第一张图图图像像像是谁 Who is in your first photo

Table 2: Examples of generated replies. Predicted keywords are in bold. †Li is a Chinese actress; we
anonymized her first name. ‡Tieba is a Chinese forum where our datasets are crawled.

Model seq2seq seq2BF−
seq2BF+

keyword remaining
Entropy 6.960 6.971 11.630 7.422

Table 3: Fine-grained analysis of character-level entropy. In the seq2BF+ model, we analyze the aver-
age entropy of keywords and remaining words separately.

the “goodness” of a reply (so that the annotation complies with the subjective nature of human evalua-
tion). All annotators yielded the same system-level ranking order, providing consistent evidence of the
effectiveness of our approach.

Regarding intrinsic metrics, our seq2BF with a predicted keyword generates slightly shorter replies
than seq2seq, but contains far richer information, as the entropy increases by 30%. The results verify
that content introducing is particularly useful in generative human-computer dialogue systems.

3.4 Case Studies and Discussion

We provide case studies in Table 2.4 As we see, the seq2seq responder prefers safe, universally relevant
utterances like “me too.” In these examples, the replies generally match the queries in meaning, but such
universal replies are too boring and thus undesirable in real applications. In the seq2BF model with
content introducing, we predict a keyword of the reply with PMI. This yields meaningful words/terms
like rumor and score, serving as the gist of the reply. Then the seq2BF model generates previous and
future words to obtain a more complete utterance (maybe not a whole sentence because of the casualness
in human conversation). The proposed “backward and forward sequences” mechanism ensures that the
predicted keyword can appear at an arbitrary position in the utterance.

We delve deep into the question: why seq2seq models (or variants) tend to generate universal
4Due to Chinese-English translation, some characteristics cannot be fully presented in the English text, e.g., the position of

the given word, the length of the reply, and even the part-of-speech of a word. Nevertheless, we present the predicted keyword
and its translated counterpart in bold and thus the aforementioned characteristics can be visually demonstrated to some extent.
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replies? We may have two conjectures: (1) The seq2seq model cannot capture rich enough semantics
other than “yes,” “me too,” etc. (2) The sequence generator is able to capture rich semantics, but starting
from a high-level universal word at the beginning, it is unlikely to fall into concrete concepts.

We present in Table 3 the average character-level entropy of keywords and non-keywords. We find that,
provided with a noun term, seq2BF can generate meaningful remaining words (keyword excluded) with
an entropy of 7.422, higher than 6.971 given by seq2BF without keywords. Noticing that the seq2BF
model is exactly the same in content-introducing and non-content-introducing settings, we believe the
second conjecture holds. Choosing the most likely reply yields universal utterances; moreover, RNN
sequence generators are reluctant to introduce concrete concepts, provided with one or a few universal
words/terms (like I and you) that are greedily chosen at the beginning.

Fortunately, our content-introducing seq2BF works in an opposite fashion. We first predict a mean-
ingful but not that probable noun term as the keyword; then we feed seq2BFwith such concrete keyword
that provides substantial content. In this way, our approach significantly outperforms pure seq2seq
generation in short-text conversation systems.

4 Related Work

4.1 Dialogue Systems

Automatic human-computer conversation has long attracted the attention of researchers. In early
decades, people design rule- or template-based systems, but they are mainly in vertical domains (Fer-
guson et al., 1996; Misu and Kawahara, 2007). Although such approaches can also be extended to the
open domain (Han et al., 2015), their generated sentences are subject to 7 predefined forms and thus
are highly restricted. For open dialogues, researchers have applied data-driven approaches, including
retrieval methods (Isbell et al., 2000; Wang et al., 2013), phrase-based machine translation (Ritter et al.,
2011), and recurrent neural networks (Sordoni et al., 2015; Shang et al., 2015).

A hot research topic in human-computer conversation is mixed-initiative systems, for example,
the TRAINS-95 system for route planning (Ferguson et al., 1996) and AutoTutor for learner advis-
ing (Graesser et al., 2005). Li et al. (2016b) propose a proactive dialogue system that can introduce
new content when a stalemate occurs. The system is chatbot-like and in the open domain; an external
knowledge base is used for searching related entities as new content. They propose a random walk-
like reranking algorithm based on retrieval results. Different from Li et al. (2016b)’s work, our paper
addresses the problem of content introducing in open-domain generative dialogue systems.

4.2 Neural Networks for Sentence Generation

Sutskever et al. (2014) propose seq2seq for machine translation; the idea is to encode a source sen-
tence as a vector by a recurrent neural network (RNN) and to decode the vector to a target sentence by
another RNN. Bahdanau et al. (2015) enhance it with an attention mechanism. These approaches largely
benefit natural language generation tasks such as abstractive summarization (Rush et al., 2015), question
answering (Yin et al., 2016), and poetry generation (Wang et al., 2016).

For neural network-based dialogue systems, Sordoni et al. (2015) summarize a query and context as
bag-of-words features, based on which an RNN decodes the reply. Shang et al. (2015) generate replies
for short-text conversation by seq2seq-like neural networks with local and global attention. Yao et al.
(2015) and Serban et al. (2016a) design hierarchical neural networks for multi-turn conversation.

To address the problem of universal replies, Li et al. (2016a) propose a mutual information training
objective. Serban et al. (2016b) apply a variational Bayes approach that imposes a probabilistic distri-
bution on the hidden variables and encodes the parameters of the posterior distribution. A very recent
study similar to ours is Xing et al. (2016), where replies are augmented with topic information. In a
dialogue-like question-answering system, Yin et al. (2016) query a knowledge base and insert a selected
triple into an answer sentence by a soft logistic unit. In such approach, however, the answer may not
actually appear in the generated sentence, especially when the test patterns are different from training
ones. Unlike existing work, our seq2BF model guarantees the predicted keyword can appear in the
reply at an appropriate position.
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5 Conclusion and Future Work

In this paper, we proposed a content-introducing approach to generative short-text conversation systems.
Instead of generating a reply sequentially from the beginning word to the end as in existing approaches,
we used pointwise mutual information to predict a keyword, i.e., a noun term, for the reply. Then we pro-
posed a “sequence to backward and forward sequences” (seq2BF) model to generate a reply containing
the predicted keyword. The seq2BF mechanism ensures the keyword can appear at an arbitrary posi-
tion in the reply, but the generated utterance is still fluent. Experimental results show that our approach
consistently outperforms the pure seq2seq model in dialogue systems in terms of human evaluation
and the entropy measure.

In future work, we would like to apply different keyword prediction techniques (e.g., neural sentence
models) to improve the performance; the proposed seq2BF model can also be extended to other ap-
plications like generative question answering, where the answer may be given by searching an external
database or knowledge base.
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