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Abstract. Existing neural conversational models process natural lan-
guage primarily on a lexico-syntactic level, thereby ignoring one of the
most crucial components of human-to-human dialogue: its affective con-
tent. We take a step in this direction by proposing three novel ways
to incorporate affective/emotional aspects into long short term memory
(LSTM) encoder-decoder neural conversation models: (1) affective word
embeddings, which are cognitively engineered, (2) affect-based objective
functions that augment the standard cross-entropy loss, and (3) affec-
tively diverse beam search for decoding. Experiments show that these
techniques improve the open-domain conversational prowess of encoder-
decoder networks by enabling them to produce more natural and emo-
tionally rich responses.
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1 Introduction

Human-computer dialogue systems have wide applications ranging from restau-
rant booking [24] to emotional virtual agents [13]. In a neural network-based
dialogue system, discrete words are mapped to real-valued vectors, known as
embeddings, capturing abstract meanings of words [14]; then an encoder-decoder
framework—with long short term memory (LSTM)-based recurrent neural net-
works (RNNs)—generates a response conditioned on one or several previous
utterances. Recent advances in this direction have demonstrated its efficacy for
both task-oriented [24] and open-domain dialogue generation [11].

While most of the existing neural conversation models generate syntacti-
cally well-formed responses, they are prone to being short, dull, or vague. Latest
efforts to address these issues include diverse decoding [22], diversity-promoting
objective functions [10], human-in-the-loop reinforcement/active learning [1,11]
and content-introducing approaches [15]. However, one shortcoming of these
existing open-domain neural conversation models is the lack of affect mod-
eling of natural language. These models, when trained over large dialogue
datasets, do not capture the emotional states of the two humans interacting
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in the textual conversation, which are typically manifested through the choice
of words or phrases. For instance, the attention mechanism in a sequence-to-
sequence (Seq2Seq) model can learn syntactic alignment of words within the
generated sequences [2]. Also, neural word embedding models like Word2Vec
learn word vectors by context, and can preserve low-level word semantics
(e.g., “king”−“male”≈“queen”−“woman”). However, emotional aspects are not
explicitly captured by existing methods.

Our goal is to alleviate this issue in open-domain neural dialogue models by
augmenting them with affective intelligence. We do this in three ways.

1. We embed words in a 3D affective space by retrieving word-level affective rat-
ings from a cognitively engineered affective dictionary [23], where affectively
similar constructs are close to one other. In this way, the ensuing neural model
is aware of words’ emotional features.

2. We augment the standard cross-entropy loss with affective objectives, so that
our neural models are taught to generate more emotional utterances.

3. We inject affective diversity into the responses generated by the decoder
through affectively diverse beam search algorithms, and thus our model
actively searches for affective responses during decoding.

We also show that these emotional aspects can be combined to further
improve the quality of generated responses in an open-domain dialogue sys-
tem. Overall, in information-retrieval tasks like question-answering, our proposed
models can help retain the users by interacting in a more human way.

2 Related Work

Affectively cognizant virtual agents are attracting interest both in the academia
[13] and the industry,1 due to their ability to provide emotional companionship
to humans. Past research has mostly focused on developing hand-crafted speech
and text-based features to incorporate emotions in retrieval-based or slot-based
spoken dialogue systems [3,18]. Our work is related to two very recent studies:

– Affect Language Model [6, Affect-LM] is an LSTM-RNN language model
which leverages the LIWC [17] text analysis program for affective feature
extraction through keyword spotting. It considers binary affective features,
namely positive emotion, angry, sad, anxious, and negative emotion. Our work
differs from Affect-LM in that we consider affective dialogue systems instead
of merely language models.

– Emotional Chatting Machine [26, ECM] is a Seq2Seq model. It takes as input
a prompt and the desired emotion of the response, and produces a response. It
has 8 emotion categories, namely anger, disgust, fear, happiness, like, sadness,
surprise, and other. Our approach does not require the input of desired emo-
tion as in ECM, which is unrealistic in applications. Instead, we intrinsically
model emotion by affective word embeddings as input, as well as objective
functions and inference criterion based on these embeddings.

1 https://www.ald.softbankrobotics.com/en/robots/pepper.

https://www.ald.softbankrobotics.com/en/robots/pepper
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Fig. 1. Relationship between several adjectives, nouns, and verbs on 3-D VAD scale.

3 Background

In NLP, word embeddings map words (or tokens) to real-valued vectors of
fixed dimensionality. Typically, they are learned from the co-occurrence statistics
of words in large natural language corpora, and the learned embedding vector
space has such a property that words sharing similar syntactic and semantic
context are close to each other. However, it is known that co-occurrence statistics
are insufficient to capture sentiment/emotional features, because words different
in sentiment often share context (e.g., “a good book” vs. “a bad book”).

A sequence-to-sequence (Seq2Seq) model is an encoder-decoder neural
framework that maps a variable length input sequence to a variable length out-
put sequence [21]. It consists of an encoder and a decoder, both of which are
RNNs (typically with LSTM units). The encoder network sequentially accepts
the embedding of each word in the input sequence, and encodes the input sen-
tence as a vector. The decoder network takes the vector as input and sequen-
tially generates an output sequence. Given a message-response pair (X,Y ), where
X = x1, · · · , xm and Y = y1, · · · , yn are sequences of words, Seq2Seq models
(parametrized by θ) are typically trained with cross entropy loss (XENT):

LXENT(θ) = − log p(Y |X) = −
n∑

i=1

log p(yi|y1, · · · , yi−1,X), (1)

4 The Proposed Affective Approaches

In this section, we propose affective neural response generation, which augments
traditional neural conversation models with emotional cognizance. We lever-
age a cognitively engineered dictionary to propose three strategies for affec-
tive response generation, namely affective word embeddings as input, affective
training objectives, and affectively diverse beam search. As will be shown later,
these affective strategies can be combined to further improve Seq2Seq dialogue
systems.
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4.1 Affective Word Embeddings

As said, traditional word embeddings trained with co-occurrence statistics are
insufficient to capture affect aspects. We propose to augment traditional word
embeddings with a 3D affective space by using an external cognitively-engineered
affective dictionary [23].2 The dictionary we use consists of 13,915 lemmatized
English words, each of which is rated on three traditionally accepted continuous
and real-valued dimensions of emotion: Valence (V, the pleasantness of a stim-
ulus), Arousal (A, the intensity of emotion produced by a stimulus), and Dom-
inance (D, the degree of power exerted by a stimulus). Sociologists hypothesize
that the VAD space captures almost 70% of the variance in affective meanings of
concepts [16]. VAD ratings have been previously used in sentiment analysis and
empathetic tutors, among other affective computing applications [8,19]. To the
best of our knowledge, we are the first to introduce VAD to dialogue systems.

The scale of each dimension in the VAD space is from 1 to 9, where a higher
value corresponds to higher valence, arousal, or dominance. Thus, V � 1, 5 and
9 corresponds to a word being very negative (pedophile), neutral (tablecloth) and
very positive (happiness), respectively. Similarly, A � 1, 5 and 9 corresponds to a
word having very low (dull), moderate (watchdog), and very high (insanity) emo-
tional intensity, respectively. Finally, D � 1, 5 and 9 corresponds to a word that
is very powerless (dementia), neutral (waterfall) and very powerful (paradise),
respectively. The VAD ratings of each word were collected through a survey
in [23] over 1800 participants. We directly take them as the 3-dimensional word-
level affective embeddings. Some examples of words (including nouns, adjectives,
and verbs) and their corresponding VAD values are depicted in Fig. 1.

For words missing in this dictionary, such as stop words and proper nouns, we
set the VAD vector to be the neutral vector η = [5, 1, 5], because these words are
neutral in pleasantness (V) and power (D), and evoke no arousal (A). Formally,
we define “word to affective vector” (W2AV) as:

W2AV(w) =

{
VAD(l(w)), if l(w) ∈ dict

η = [5, 1, 5], otherwise
(2)

where l(w) is the lemmatization of the word w. In this way, words depicting sim-
ilar emotions are close together in the affective space, and affectively dissimilar
words are far apart from each other. Thus W2AV is suitable for neural processing.

The simplest approach to utilize W2AV, perhaps, is to feed it to a Seq2Seq
model as input. Concretely, we concatenate the W2AV embeddings of each word
with its traditional word embeddings, the resulting vector being the input to
both the encoder and the decoder.

4.2 Affective Loss Functions

Equipped with affective vectors, we further design affective training loss functions
to explicitly train an affect-aware Seq2Seq conversation model. The philosophy
2 Available for free at http://crr.ugent.be/archives/1003.

http://crr.ugent.be/archives/1003
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of manipulating loss function is similar to [10], but we focus on affective aspects
(instead of diversity in general). We have several heuristics as follows.

Minimizing Affective Dissonance. We start with the simplest approach:
maintaining affective consistency between prompts and responses. This heuris-
tic arises from the observation that typical open-domain textual conversations
between two humans consist of messages and responses that, in addition to being
affectively loaded, are affectively similar to each other. For instance, a friendly
message typically elicits a friendly response and provocation usually results in
anger or contempt. Assuming that the general affective tone of a conversation
does not fluctuate too suddenly and too frequently, we emulate human-human
interactions in our model by minimizing the dissonance between the prompts
and the responses, i.e. the Euclidean distance between their affective embed-
dings. This objective allows the model to generate responses that are emotionally
aligned with the prompts. Thus, at time step i, the loss is computed by

Li
DMIN(θ) = −(1− λ) log p(yi|y1, · · · , yi−1, X) + λ p̂(yi)

∥
∥
∥
∥

|X|
∑

j=1

W2AV(xj)

|X| −
i∑

k=1

W2AV(yk)

i

∥
∥
∥
∥
2

(3)

where ‖·‖2 denotes �2-norm. The first term is the standard XENT loss as in Eq. 1.
The sum

∑
j

W2AV(xj)
|X| is the average affect vector of the source sentence, whereas

∑
k

W2AV(yk)
i is the average affect vector of the target sub-sentence generated up to

the current time step i.
In other words, we penalize the distance between the average affective embed-

dings of the source and the target sentences. Notice that this affect distance is not
learnable and that selecting a single predicted word makes the model indifferen-
tiable. Therefore, we relax hard prediction of a word by its predicted probability
p̂(yi). λ is a hyperparameter balancing the two factors.

Maximizing Affective Dissonance. Admittedly, minimizing the affective dis-
sonance does not always make sense while we model a conversation. An over-
friendly message from a stranger may elicit anger or disgust from the recipient.
Furthermore, responses that are not too affectively aligned with the prompts
may be perceived as more interesting, by virtue of being less predictable. Thus,
we design an objective function LDMAX that maximizes the dissonance by flipping
the sign in the second term in Eq. 3. (Details are not repeated here.)

Maximizing Affective Content. Our third heuristic encourages Seq2Seq to
generate affective content, but does not specify the polarity of sentiment. This
explores the hypothesis that most of the casual human responses are not dull or
emotionally neutral. Concretely, we maximize the affective content of the model’s
responses, so that it avoids generating generic responses like “yes,” “no,” “I don’t
know,” and “I’m not sure.” That is, at the time step i, the loss function is

Li
AC(θ) =−(1 − λ) log p(yi|y1, · · · , yi−1,X) − λ p̂(yi)

∥∥W2AV(yi) − η
∥∥
2

(4)
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The second term is a regularizer that discourages non-affective words. We penal-
ize the distance between yi’s affective embedding and the affectively neutral
vector η = [5, 1, 5], so the model pro-actively chooses emotionally rich words.

4.3 Affectively Diverse Decoding

In this subsection, we propose affectively diverse decoding that incorporates
affect into the decoding process of neural response generation.

Traditionally, beam search (BS) has been used for decoding in Seq2Seq mod-
els because it provides a tractable approximation of searching an exponentially
large solution space. However, in the context of open-domain dialogue genera-
tion, BS is known to produce nearly identical samples like “This is great!” and
“This is so great!”. Diverse beam search (DBS) [22] is a recently proposed vari-
ant of BS that explicitly considers diversity during decoding; it has been shown
to outperform BS and other diverse decoding techniques in many NLP tasks.

Below, we describe BS, DBS, and our proposed affective variants of DBS.

Beam Search (BS) and Diverse Beam Search (DBS). BS maintains top-
B most likely (sub)sequences, where B is known as the beam size. At each
time step t, the top-B subsequences at time step t − 1 are augmented with
all possible actions available; then the top-B most likely branches are retained
at time t, and the rest are pruned. Let V be the set of vocabulary tokens,
X be the input sequence, yi,[t−1] be the ith beam stored at time t − 1, and
Y[t−1] = {y1,[t−1], · · · ,yB,[t−1]} be the set of beams stored by BS at time t − 1.
Then at time t, the BS objective is

Y[t] = y1∗
1..t, · · · , yB∗

1..t = arg max
y1,[t],··· ,yB,[t]

∈Y[t−1]×V

B∑

b=1

t∑

i=1

log p(yb,i|yb,[i−1],X) (5)

subject to yi,[t] �= yj,[t], where Y[t−1] × V is the set of all possible extensions
based on the beams stored at time t − 1. DBS aims to overcome the diversity
problem in BS by incorporating diversity among candidate outputs. It divides
the top-B beams into G groups (each group containing B′ = G/B beams) and
adds to traditional BS (Eq. 5) a dissimilarity term Δ(Y 1

[t], · · · , Y g−1
[t] )[yt] which

measures the dissimilarity between group g and previous groups 1, · · · , g − 1 if
token yt is selected to extend any beam in group g. This is given by

Y g
[t] = arg max

yg
1,[t],··· ,y

g

B′,[t]
∈Y g

[t−1]×V

B′∑

b=1

t∑

i=1

log p(yg
b,i|yg

b,[i−1],X) + λgΔ(Y 1
[t], · · · , Y g−1

[t] )[yg
b,t] (6)

subject to yg
i,[t] �= yg

j,[t], where λg ≥ 0 is a hyperparameter controlling the
diversity strength. Intuitively, DBS modifies the probability in BS by adding
a dissimilar term between a particular sample (i.e., yg

b,1 · · · yg
b,t) and samples in
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other groups (i.e., Y 1
[t], · · · , Y g−1

[t] ). We refer readers to [22] for the details of DBS.
Here, we focus on the dissimilarity metric that can incorporate affective aspects
into the decoding phase.

Affectively Diverse Beam Search (ADBS). The dissimilarity metric for
DBS can take many forms as used in [22]: Hamming diversity that penalizes
tokens based on the number of times they are selected in the previous groups,
n-gram diversity that discourages repetition of n-grams between groups, and
neural-embedding diversity that penalizes words with similar embeddings across
groups. Among these, the neural-embedding diversity metric is the most relevant
to us. When used with Word2Vec embeddings, this metric discourages semanti-
cally similar words (e.g., synonyms) to be selected across different groups.

To decode affectively diverse samples, we propose to inject affective dissimi-
larity across the beam groups based on affective word embeddings. This can be
done either at the word level or sentence level. We formalize these notions below.

• Word-Level Diversity for ADBS (WL-ADBS). We define the word-level affect
dissimilarity metric ΔW to be

ΔW (Y 1
[t], · · · , Y g−1

[t] )[yg
b,t] = −

g−1∑

j=1

B′∑

c=1

sim
(
W2AV(yg

b,t), W2AV(y
j
c,t)

)
(7)

where sim(·) denotes a similarity measure between two vectors. In our experi-
ments, we use the cosine similarity function. yg

b,t denotes the token under con-
sideration at the current time step t for beam b in group g, and yj

c,t denotes the
token chosen for beam c in a previous group j at time t.

Intuitively, this metric computes the cosine similarity of group g’s beam b
with all the beams generated in groups 1, · · · , g − 1. The metric operates at the
word level, ensuring that the word affect at time t is diversified across groups.

• Sentence-Level Diversity for ADBS (SL-ADBS). The word-level metric ΔW

in Eq. 7 does not take into account the overall sentence affect for each group.
We propose an alternative sentence-level affect diversity metric, given by

ΔS(Y 1
[t], · · · , Y g−1

[t] )[yg
b,t] = −

g−1∑

j=1

B′∑

c=1

sim
(
Ψ(yg

b,[t]), Ψ(yj
c,[t])

)
(8)

where Ψ(yk
i,[t]) =

∑

w∈yk
i,[t]

W2AV(w) (9)

Here, yk
i,[t] for k ≤ g is the ith beam in the kth group stored at time t; yg

b,[t]

is the concatenation of yg
b,[t−1] and yg

b,t. Intuitively, this metric computes the
cumulative dissimilarity (given by the function Ψ(·)) between the current beam
and all the previously generated beams in other groups. This bag-of-affective-
words approach is simple but works well in practice, as will be shown later.
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Table 1. The effect of affective word embeddings as input.

Model Syntactic coherence Natural Emotional approp.

Word emb. (baseline) 1.48 0.69 0.41

Word+Affective emb. 1.71 ↑ 1.05 ↑ 1.01 ↑

Table 2. The effect of affective loss functions.

Model Syntactic coherence Naturalness Emotional approp

LXENT (baseline) 1.48 0.69 0.41

LDMIN 1.75 ↑ 0.83 ↑ 0.56 ↓
LDMAX 1.74 ↑ 0.85 ↑ 0.58 ↑
LAC 1.71 ↑ 0.95 ↑ 0.71 ↑

It should be also noticed that several other beam search-based diverse decod-
ing techniques have been proposed in recent years, including DivMBest [7] and
MMI objective [10]. All of them use the notion of a diversity term within BS;
therefore our affect-injecting technique can be used with these algorithms.

5 Experiments

We evaluated our approach on the Cornell Movie Dialogs Corpus [4], which
contains ∼300k utterance-response pairs. All our model variants used a single-
layer LSTM encoder and a single-layer LSTM decoder, each layer containing
1024 cells. We set the vocabulary size to 12,000 and used Adam [9] optimizer.

For the baseline LXENT loss, we used 1024-D Word2Vec embeddings as input
and trained the Seq2Seq model for 50 epochs using Eq. 1. For the affective
embeddings as input, we used 1027-D vectors, each a concatenation of 1024-D
Word2Vec and 3-D W2AV embeddings. Training was done for 50 epochs. For each
of the affective loss functions (LAC, LDMIN, and LDMAX), we trained the model using
LXENT loss for 40 epochs, followed by 10 epochs using the affective loss functions.
The ADBS metrics ΔW and ΔS were deployed at test time with G = B.

5.1 Results

Recent work employs both automated metrics (e.g., BLEU, ROUGE, and
METEOR) and human judgments to evaluate dialogue systems. While auto-
mated metrics enable high-throughput evaluation, they have weak or no corre-
lation with human judgments [12]. It is also unclear how to evaluate affective
aspects by automated metrics. Therefore, in this work, we recruited 3–5 human
judges to evaluate our models, following several previous studies [15,20].

To evaluate the quality of the generated responses, we used 5 workers to
evaluate 100 test samples for each model variant in terms of syntactic coherence
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Table 3. Effect of affectively diverse decoding. H-DBS refers to Hamming-based DBS
used in [22]. WL-ADBS and SL-ADBS are the proposed word-level and sentence-level
affectively diverse beam search, respectively.

Model Syntactic diversity Affective diversity # Emotionally
approp. responses

BS (baseline) 1.23 0.87 0.89

H-DBS 1.47 ↑ 0.79 ↓ 0.78 ↓
WL-ADBS 1.51 ↑ 1.25 ↑ 1.30 ↑
SL-ADBS 1.45 ↑ 1.31 ↑ 1.33 ↑

Table 4. Combining different affective strategies.

Model Syntactic coherence Naturalness Emotional approp.

Traditional Seq2Seq
(baseline)

1.48 0.69 0.41

Seq2Seq+Affective
embeddings

1.71 ↑ 1.05 ↑ 1.01 ↑

Seq2Seq+Affective
emb. & Loss

1.76 ↓ 1.03 ↓ 1.07 ↑

Seq2Seq+Affective
emb. & Loss &
Decoding

1.69 ↓ 1.09 ↑ 1.10 ↓

(Does the response make grammatical sense?), naturalness (Could the response
have been plausibly produced by a human?) and emotional appropriateness (Is
the response emotionally suitable for the prompt?). For each axis, the judges
were asked to assign each response an integer score of 0 (bad), 1 (satisfactory),
or 2 (good). The scores were then averaged for each axis (Tables 1 and 2). We
evaluated the inter-annotator consistency by Fleiss’ κ score [5], and obtained a κ
score of 0.447, interpreted as “moderate agreement” among the judges.3 We also
computed the statistical significance of the results using one-tailed Wilcoxon’s
Signed Rank Test [25] with significance level set to 0.05. This is indicated in
Tables 1 and 2 through arrows: a down-arrow indicates that the model performed
equally well as the baseline, and an up-arrow indicates that the model performed
significantly better than the baseline.

The evaluation of diversity was conducted separately (Table 3). In this
experiment, an annotator was presented with top-three decoded responses
and was asked to judge syntactic diversity (How syntactically diverse are the
five responses?) and emotional diversity (How affectively diverse are the five
responses?). The rating scale was 0, 1, 2, and 3 with labels bad, satisfactory,
good, and very good, respectively. The annotator was also asked to state the

3 https://en.wikipedia.org/wiki/Fleiss%27 kappa.

https://en.wikipedia.org/wiki/Fleiss%27_kappa
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number of beams that were emotionally appropriate to the prompt. The scores
obtained for each question were averaged. We used three annotators in this exper-
iment (fewer than the previous one), as it required more annotations (3 responses
for every test sample). The Fleiss’ κ score for this protocol was 0.471, signifying
“moderate agreement” between the judges. As before, Wilcoxon’s Signed Rank
significance test was used to compare each model with the baseline (vanilla BS).

Next, we evaluate the performance of 3 affective strategies individually,
namely affective word embeddings as input, affective loss functions, and affec-
tively diverse decoding. We then show how these strategies can be integrated.

Experiment #1: Affective word embeddings as input. Table 1 compares
Seq2Seq open-domain dialogue systems with and without the affective word
embeddings. We see that the cognitively engineered affective embeddings, even
with 3 additional features, improve the baseline Seq2Seq model significantly (as
indicated by the up-arrows). The improvement is consistent in terms of all 3
evaluation aspects, and its effect is the most significant in emotional appropri-
ateness. The results show that traditional word embeddings learned end-to-end
during training are not sufficient to capture emotional aspects; using additional
knowledge makes the model more aware of affect.

Experiment #2: Affective loss functions. We compare in Table 2 the pro-
posed loss functions—namely minimizing affective dissonance (DMIN), maximiz-
ing affective dissonance (DMAX), and maximizing affective content (AC)—with
traditional cross-entropy loss (XENT).

Table 5. Examples of the responses generated by the baseline and affective models.

Message Model Response

I wish I was a
billionaire

Traditional Seq2Seq Um, you know. . .

LDMIN But you work for the casino?

LDMAX You are personally responsible

LAC It’s suicide!

LXENT+ Aff. emb. Don’t trouble yourself about it

LAC+Aff. emb. Would it matter in the end

LAC+Aff. emb.+SL-ADBS Would it change you?

I hate you Traditional Seq2Seq It was supposed to be

LDMIN Aww c all guys do. . .

LDMAX Keeps fairies away!

LAC I haven’t done anything crazy

LXENT+Aff. emb. Don’t say that!

LAC+Aff. emb. I still love you!

LAC+Aff. emb. + SL-ADBS I don’t want to fight you
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As shown in Table 2, DMIN and DMAX yield similar results, both outperforming
XENT. Moreover, AC generally outperforms DMIN and DMAX in terms of naturalness
and appropriateness. The results imply that forcing the affect vector in either
direction (towards or against the previous utterance) helps the model, but its
performance is worse than AC. The mediocre performance of LDMIN and LDMAX

could be explained by the fact that the relationship between a prompt and a
response is not always as simple as minimum or maximum affective dissonance.
It is usually much more subtle; therefore it makes more sense to model this
relationship through established sociological interaction theories like the Affect
Control Theory [8]. By contrast, the AC loss function encourages affective content
without specifying the affect direction; it works well in practice and significantly
out-performs the baseline XENT loss on all three axes.

Considering both Tables 1 and 2, we further notice that the affective loss func-
tion alone is not as effective as affective embeddings. This makes sense because
the loss function does not explicitly provide additional knowledge to the neural
network, but word embeddings do. However, as will be seen in Experiment #4,
these affective aspects can be directly combined. Another interesting observation
is the improved syntactic coherence of the affect-based models; we hypothesize
that these models replace grammatically incorrect words with affectively suitable
options that turn out to be more grammatically sound.

Experiment #3: Affectively Diverse Decoding. We now evaluate our affec-
tively diverse decoding methods. Since evaluating diversity requires multiple
decoded utterances for a test sample, we adopted a different evaluation setting as
described before. Table 3 compares both word-level and sentence-level affectively
diverse BS (WL-ADBS and SL-ADBS, respectively) with the original BS and
Hamming-based DBS used in [22]. We see that WL-ADBS and SL-ADBS beat
the baselines BS and Hamming-based DBS by a statistically significant margin
on affective diversity as well as number of emotionally appropriate responses. SL-
ADBS is slightly better than WL-ADBS as expected, since it takes into account
the cumulative affect of sentences as opposed to individual words.

Experiment #4: Putting them all together. We show in Table 4 how the
affective word embeddings, loss functions, and decoding methods perform when
they are combined. Here, we chose the best variants in the previous individual
tests: the loss function maximizing affective content (LAC) and the sentence level
diversity measure (SL-ADBS). In this table, the statistical significance arrows
denote the comparison of each row with the previous row, rather than with the
baseline. As shown, the performance of our model generally increases when we
gradually add new components to it, though some of the incremental improve-
ments are statistically insignificant.

Note that our setting is different from ECM [26], the only other known
emotion-based neural dialogue system to the best of our knowledge. ECM
requires a desired affect category as input, which is unrealistic in applications.
It also differs from our experimental setting (and our research goal), making
direct comparison infeasible. However, our proposed affective approaches can be
potentially integrated to ECM.
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Finally, we present several sample outputs of all models in Table 5 to give
readers a taste of how the responses differ.

6 Conclusion

In this work, we advance the development of affectively cognizant neural encoder-
decoder dialogue systems by three affective strategies. We embed linguistic con-
cepts in an affective space with a cognitively engineered dictionary, propose sev-
eral affect-based heuristic objective functions, and introduce affectively diverse
decoding methods. In information retrieval tasks such as question-answering and
dialogue systems, these techniques can help retain the users by interacting with
them in a more empathetic and human way.
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