
Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics, pages 302–312
July 5 - 10, 2020. c©2020 Association for Computational Linguistics

302

Unsupervised Paraphrasing by Simulated Annealing

Xianggen Liu1 Lili Mou2 Fandong Meng3 Hao Zhou4 Jie Zhou3 Sen Song1

1Laboratory for Brain and Intelligence and Department of Biomedical Engineering, Tsinghua University
2Department of Computing Science, University of Alberta; Alberta Machine Intelligent Institute (Amii)

3Pattern Recognition Center, WeChat AI, Tencent Inc, 4ByteDance AI Lab
liuxg16@mails.tsinghua.edu.cn, doublepower.mou@gmail.com

{fandongmeng,withtomzhou}@tencent.com
zhouhao.nlp@bytedance.com, songsen@tsinghua.edu.cn

Abstract

We propose UPSA, a novel approach that
accomplishes Unsupervised Paraphrasing by
Simulated Annealing. We model paraphrase
generation as an optimization problem and pro-
pose a sophisticated objective function, involv-
ing semantic similarity, expression diversity,
and language fluency of paraphrases. UPSA
searches the sentence space towards this objec-
tive by performing a sequence of local edits.
We evaluate our approach on various datasets,
namely, Quora, Wikianswers, MSCOCO, and
Twitter. Extensive results show that UPSA
achieves the state-of-the-art performance com-
pared with previous unsupervised methods in
terms of both automatic and human evalua-
tions. Further, our approach outperforms most
existing domain-adapted supervised models,
showing the generalizability of UPSA.1

1 Introduction

Paraphrasing aims to restate one sentence as an-
other with the same meaning, but different word-
ings. It constitutes a corner stone in many NLP
tasks, such as question answering (Mckeown,
1983), information retrieval (Knight and Marcu,
2000), and dialogue systems (Shah et al., 2018).
However, automatically generating accurate and
different-appearing paraphrases is a still challeng-
ing research problem, due to the complexity of
natural language.

Conventional approaches (Prakash et al., 2016;
Gupta et al., 2018) model the paraphrase genera-
tion as a supervised encoding-decoding problem,
inspired by machine translation systems. Usually,
such models require massive parallel samples for
training. In machine translation, for example, the
WMT 2014 English-German dataset contains 4.5M
sentence pairs (Neidert et al., 2014).

1Code and data available at: https://github.com/
Liuxg16/UPSA

Replace
What would you do when you
have the power to be invisible ?

What would you do
when you have the
power to become
invisible ?

What would you
do if given the
power to become
invisible ?

What would you
do if given you
have the power to
become invisible ?

Sentence space

Sc
o

re
 o

f
th

e
ge

n
er

at
ed

 p
ar

ap
h

ra
se

Insert

Delete

What would you do if given
you the power to become
invisible ?

1

2

3

4

5

1 5… Editing steps

What would you do if
given you have the power
to become invisible ?

Figure 1: UPSA generates a paraphrase by a series
of editing operations (i.e., insertion, replacement, and
deletion). At each step, UPSA proposes a candidate
modification of the sentence, which is accepted or re-
jected according to a certain acceptance rate (only ac-
cepted modifications are shown). Although sentences
are discrete, we make an analogue in the continuous
real x-axis where the distance of two sentences is
roughly given by the number of edits.

However, the training corpora for paraphrasing
are usually small. The widely-used Quora dataset2

only contains 140K pairs of paraphrases; construct-
ing such human-written paraphrase pairs is expen-
sive and labor-intensive. Further, existing para-
phrase datasets are domain-specific: the Quora
dataset only contains question sentences, and thus,
supervised paraphrase models do not generalize
well to new domains (Li et al., 2019). On the other
hand, researchers synthesize pseudo-paraphrase
pairs by clustering news events (Barzilay and Lee,
2003), crawling tweets of the same topic (Lan et al.,
2017), or translating bi-lingual datasets (Wieting
and Gimpel, 2017), but these methods typically
yield noisy training sets, leading to low paraphras-
ing performance (Li et al., 2018).

As a result, unsupervised methods would largely
benefit paraphrase generation as no parallel data are

2https://www.kaggle.com/c/quora-question-pairs

https://github.com/Liuxg16/UPSA
https://github.com/Liuxg16/UPSA

303

needed. With the help of deep learning, researchers
are able to generate paraphrases by sampling from
a neural network-defined probabilistic distribution,
either in a continuous latent space (Bowman et al.,
2016; Bao et al., 2019) or directly in the word
space (Miao et al., 2019). However, the meaning
preservation and expression diversity of those gen-
erated paraphrases are less “controllable” in such
probabilistic sampling procedures.

To this end, we propose a novel approach to Un-
supervised Paraphrasing by Simulated Annealing
(UPSA). Simulated annealing (SA) is a stochastic
searching algorithm towards an objective function,
which can be flexibly defined. In our work, we
design a sophisticated objective function, consid-
ering semantic preservation, expression diversity,
and language fluency of paraphrases. SA searches
towards this objective by performing a sequence
of local editing steps, namely, word replacement,
insertion, deletion, and copy. For each step, UPSA
first proposes a potential editing, and then accepts
or rejects the proposal based on sample quality. In
general, a better sentence (higher scored in the ob-
jective) is always accepted, while a worse sentence
is likely to be rejected, but could also be accepted
(controlled by an annealing temperature) to explore
the search space in a less greedy fashion. At the be-
ginning, the temperature is usually high, and worse
sentences are more likely to be accepted, pushing
SA outside a local optimum. The temperature is
cooled down as the optimization proceeds, making
the model better settle down to some optimum. Fig-
ure 1 illustrates how UPSA searches an optimum
in unsupervised paraphrase generation.

We evaluate the effectiveness of our model on
four paraphrasing datasets, namely, Quora, Wikian-
swers, MSCOCO, and Twitter. Experimental re-
sults show that UPSA achieves a new state-of-the-
art unsupervised performance in terms of both au-
tomatic metrics and human evaluation.

In summary, our contributions are as follows:

• We propose the novel UPSA framework that ad-
dresses Unsupervised Paraphrasing by Simulated
Annealing.
• We design a searching objective function for

paraphrasing that not only considers language
fluency and semantic similarity, but also explic-
itly models expression diversity between a para-
phrase and the input.
• We propose a copy mechanism as one of our

search actions of simulated annealing to address

rare words.
• We achieve the state-of-the-art performance on

four benchmark datasets compared with previ-
ous unsupervised paraphrase generators, largely
reducing the performance gap between unsuper-
vised and supervised paraphrasing. We outper-
form most domain-adapted paraphrase genera-
tors, and even a supervised one on the Wikian-
swers dataset.

2 Related Work

In early years, paraphrasing was typically accom-
plished by exploiting linguistic knowledge (Mcke-
own, 1983; Ellsworth and Janin, 2007; Narayan
et al., 2016) and statistical machine translation
methods (Quirk et al., 2004; Dolan et al., 2004). Re-
cently, deep neural networks have become a prevail-
ing approach to text generation, where paraphras-
ing is often formulated as a supervised encoding-
decoding problem, for example, using stacked
residual LSTM (Prakash et al., 2016) and the Trans-
former model (Wang et al., 2019).

Unsupervised paraphrasing is an emerging re-
search direction in the field of NLP. The variational
autoencoder (VAE) can be intuitively applied to
paraphrase generation in an unsupervised fashion,
as we can sample sentences from a learned latent
space (Bowman et al., 2016; Zhang et al., 2019;
Bao et al., 2019). But the generated sentences are
less controllable and suffer from the error accu-
mulation problem in VAE’s decoding phase (Miao
et al., 2019). Roy and Grangier (2019) introduce
an unsupervised model based on vector-quantized
autoencoders (Van den Oord et al., 2017). But their
work mainly focuses on generating sentences for
data augmentation instead of paraphrasing itself.

Miao et al. (2019) use Metropolis–Hastings sam-
pling (1953) for constrained sentence generation,
achieving the state-of-the-art unsupervised para-
phrasing performance. The main difference be-
tween their work and ours is that UPSA imposes
the annealing temperature into the sampling pro-
cess for better convergence to an optimum. In ad-
dition, we define our searching objective involving
not only semantic similarity and language fluency,
but also the expression diversity; we further pro-
pose a copy mechanism in our searching process.

Recently, a few studies have applied editing-
based approaches to sentence generation. Guu et al.
(2018) propose a heuristic delete-retrieve-generate
component for a supervised sequence-to-sequence

304

(Seq2Seq) model. Dong et al. (2019) learn the dele-
tion and insertion operations for text simplification
in a supervised way, where their groundtruth opera-
tions are obtained by some dynamic programming
algorithm. Our editing operations (insertion, dele-
tion, and replacement) are the search actions of
unsupervised simulated annealing.

Regarding discrete optimization/searching, a
naı̈ve approach is by hill climbing (Edelkamp and
Schroedl, 2011; Schumann et al., 2020; Kumar
et al., 2020), which is in fact a greedy algorithm.
In NLP, beam search (BS, Tillmann et al. 1997) is
widely applied to sentence generation. BS main-
tains a k-best list in a partially greedy fashion dur-
ing left-to-right (or right-to-left) decoding (Ander-
son et al., 2017; Zhou and Rush, 2019). By con-
trast, UPSA is local search with distributed edits
over the entire sentence. Moreover, UPSA is able
to make use of the original sentence as an initial
state of searching, whereas BS usually works in the
decoder of a Seq2Seq model and is not applicable
to unsupervised paraphrasing.

3 Approach

In this section, we present our novel UPSA frame-
work that uses simulated annealing (SA) for un-
supervised paraphrasing. In particular, we first
present the general SA algorithm and then design
our searching objective and searching actions (i.e.,
candidate sentence generator) for paraphrasing.

3.1 The Simulated Annealing Algorithm
Simulated Annealing (SA) is an effective and gen-
eral metaheuristic of searching, especially for a
large discrete or continuous space (Kirkpatrick
et al., 1983).

Let X be a (huge) search space of sentences,
and f(x) be an objective function. The goal is to
search for a sentence x that maximizes f(x). At
a searching step t, SA keeps a current sentence
xt, and proposes a new candidate x∗ by local edit-
ing. If the new candidate is better scored by f , i.e.,
f(x∗) > f(xt), then SA accepts the proposal. Oth-
erwise, SA tends to reject the proposal x∗, but may
still accept it with a small probability e

f(x∗)−f(xt)
T ,

controlled by an annealing temperature T . In other
words, the probability of accepting the proposal is

p(accept|x∗, xt, T) = min
(
1, e

f(x∗)−f(xt)
T

)
. (1)

If the proposal is accepted, xt+1 = x∗, or other-
wise, xt+1 = xt.

Inspired by the annealing in chemistry, the tem-
perature T is usually high at the beginning of
searching, leading to a high acceptance probability
even if x∗ is worse than xt. Then, the temperature
is decreased gradually as the search proceeds. In
our work, we adopt the linear annealing schedule,
given by T = max(0, Tinit − C · t), where Tinit is
the initial temperature and C is the decreasing rate.

The high initial temperature of SA makes the
algorithm less greedy compared with hill climbing,
whereas the decreasing of temperature enables the
algorithm to better settle down to a certain opti-
mum.

Theoretically, simulated annealing is guaranteed
to converge to the global optimum in a finite search
space if the proposal and the temperature satisfy
some mild conditions (Granville et al., 1994). Al-
though such convergence may be slower than ex-
haustive search and the sentence space is, in fact,
potentially infinite, simulated annealing is still a
widely applied search algorithm, especially for dis-
crete optimization. Readers may refer to Hwang
(1988) for details of the SA algorithm.

3.2 Objective Function
Simulated annealing maximizes an objective func-
tion, which can be flexibly specified in different
applications. In particular, our UPSA objective
f(x) considers multiple aspects of a candidate para-
phrase, including semantic preservation fsem, ex-
pression diversity fexp, and language fluency fflu.
Thus, our searching objective is to maximize

f(x) = fsem(x, x0) · fexp(x, x0) · fflu(x), (2)

where x0 is the input sentence.
Semantic Preservation. A paraphrase is ex-

pected to capture all the key semantics of the origi-
nal sentence. Thus, we leverage the cosine function
of keyword embeddings to measure if the key fo-
cus of the candidate paraphrase is the same as the
input. Specifically, we extract the keywords of the
input sentence x0 by the Rake system (Rose et al.,
2010) and embed them by GloVE (Pennington
et al., 2014). For each keyword, we find the closest
word in the candidate paraphrase x∗ in terms of
the cosine similarity. Our keyword-based semantic
preservation score is given by the lowest cosine
similarity among all the keywords, i.e., the least
matched keyword:

fsem,key(x∗, x0) = min
e∈keywords(x0)

max
j
{cos(w∗,j , e)},

(3)

305

where w∗,j is the jth word in the sentence x∗; e is
an extracted keyword of x0. Bold letters indicate
embedding vectors.

In addition to keyword embeddings, we also
adopt a sentence-level similarity function, based
on Sent2Vec embeddings (Pagliardini et al., 2017).
Sent2Vec learns n-gram embeddings and computes
the average of n-grams embeddings as the sen-
tence vector. It has been shown to be signifi-
cant improvements over other unsupervised sen-
tence embedding methods in similarity evaluation
tasks (Pagliardini et al., 2017). Let x∗ and x0 be
the Sent2Vec embeddings of the candidate para-
phrase and the input sentence, respectively. Our
sentence-based semantic preservation scoring func-
tion is fsim,sen(x∗, x0) = cos(x∗,x0).

To sum up, the overall semantic preservation
scoring function of UPSA is given by

fsem(x∗, x0) = fsem,key(x∗, x0)
P · fsem,sen(x∗, x0)

Q,
(4)

where P and Q are hyperparameters, balancing
the importance of the two factors. Here, we use
power weights because the scoring functions are
multiplicative.

Expression Diversity. The expression diversity
scoring function computes the lexical difference of
two sentences. We adopt a BLEU-induced function
to penalize the repetition of the words and phrases
in the input sentence:

fexp(x∗, x0) = (1− BLEU(x∗, x0))
S , (5)

where the BLEU score (Papineni et al., 2002) com-
putes a length-penalized geometric mean of n-gram
precision (n = 1, · · · , 4). S coordinates the impor-
tance of fexp(xt, x0) in the objective function (2).

Language Fluency. Despite semantic preserva-
tion and expression diversity, the candidate para-
phrase should be a fluent sentence by itself. We
use a separately trained (forward) language model
(denoted as

−→
LM) to compute the likelihood of the

candidate paraphrase as our fluency scoring func-
tion:

fflu(x∗) =

k=l∗∏
k=1

p−→LM(w∗,k|w∗,1, . . . , w∗,k−1), (6)

where l∗ is the length of x∗ and w∗,1, . . . , w∗,l are
words of x∗. Here, we use a dataset-specific lan-
guage model, trained on non-parallel sentences.
Notice that a weighting hyperparameter is not

needed for fflu, because the relative weights of dif-
ferent factors in Eqn. (2) are given by the powers
in fsem,key, fsem,sen, and fexp.

3.3 Candidate Sentence Generator
As mentioned, simulated annealing proposes a can-
didate sentence, given by different search actions.
Since each action yields a new sentence x∗ from xt,
we call it a candidate sentence generator. While
the proposal of candidate sentences does not affect
convergence in theory (if some mild conditions are
satisfied), it may largely influence the efficiency of
SA searching.

In our work, we mostly adopt the word-level
editing in Miao et al. (2019) as our searching ac-
tions, but we differ in sampling distributions and
further propose a copy mechanism for editing.

At each step t, the candidate sentence genera-
tor randomly samples an editing position k and
an editing operation namely, replacement, inser-
tion, and deletion. For replacement and inser-
tion, the candidate sentence generator also sam-
ples a candidate word. Let the current sentence
be xt = (wt,1, . . . , wt,k−1, wk, wt,k+1 . . . , wt,lt).
If the replacement operation proposes a candi-
date word w∗ for the kth step, the resulting can-
didate sentence becomes x∗ = (wt,1, . . . , wt,k−1,
w∗, wt,k+1 . . . , wt,lt). The insertion operation
works similarly.

Here, the candidate word is sampled from a prob-
abilistic distribution, induced by the objective func-
tion (2):

p(w∗|·) =
fsim(x∗, x0) · fexp(x∗, x0) · fflu(x∗)

Z
,

(7)

Z =
∑
w∗∈W

fsim(x∗, x0) · fexp(x∗, x0) · fflu(x∗),

(8)

whereW is the sampling vocabulary; Z is known
as the normalizing factor (noticing our scoring func-
tions are nonnegative). We observe that sampling
from such objective-induced distribution typically
yields a meaningful candidate sentence, which en-
ables SA to explore the search space more effi-
ciently.

It is also noted that sampling a word from the en-
tire vocabulary involves re-evaluating (2) for each
candidate word, and therefore, we also follow Miao
et al. (2019) and only sample from the top-K words
given by jointly considering a forward language

306

Algorithm 1 UPSA
1: Input: Original sentence x0

2: for t ∈ {1, . . . , N} do
3: T = max{Tinit − C · t, 0}
4: Randomly choose an editing operation and a position k
5: Obtain a candidate x∗ by candidate sentence generator
6: Compute the accepting probability paccept by Eqn. (1)
7: With probability paccept, xt+1 = x∗
8: With probability 1− paccept, xt+1 = xt
9: end for

10: return xτ s.t. τ = argmaxτ∈{1,...,N}f(xτ)

model and backward language model. The replace-
ment operator, for example, suggests the top-K
words vocabulary by

Wt,replace = top-Kw∗

[
p−→LM(wt,1, . . . , wt,k−1, w∗)·

p←−LM(w∗, wt,k+1, . . . , wt,lt)
]
.

(9)

For word insertion, the top-K vocabulary
Wt,insert is computed in a similar way (except that
the position of w∗ is slightly different). Details are
not repeated. In our experiments, K is set to 50.

Copy Mechanism. We observe that name en-
tities and rare words are sometimes deleted or re-
placed during SA stochastic sampling. They are
difficult to be recovered because they usually have
a low language model-suggested probability.

Therefore, we propose a copy mechanism for SA
sampling, inspired by that in Seq2Seq learning (Gu
et al., 2016). Specifically, we allow the candidate
sentence generator to copy the words from the origi-
nal sentence x0 for word replacement and insertion.
This is essentially enlarging the top-K sampling
vocabulary with the words in x0, given by

W̃t,op =Wt,op ∪ {w0,1, . . . , w0,l0} (10)

where op ∈ {replace,insert}. Thus, W̃t,op is the
actual vocabulary from which SA samples the word
w∗ for replacement and insertion operation.

While such vocabulary reduces the proposal
space, it works well empirically because other
low-ranked candidate words are either irrelevant or
make the sentence disfluent; they usually have low
objective scores, and are likely to be rejected even
if sampled.

3.4 Overall Optimization Process

We summarize our UPSA algorithm in Algo-
rithm 1.

Given an input x0, UPSA searches from the sen-
tence space to maximize our objective f(x), which
involves semantic preservation, expression diver-
sity, and language fluency. UPSA starts from x0
itself. For each step, it randomly selects a search
action (namely, word insertion, deletion, and re-
placement) at a position k (Line 4); if insertion or
replacement is selected, UPSA also proposes a can-
didate word, so that a candidate paraphrase x∗ is
formed (Line 5). Then, UPSA computes an accep-
tance rate paccept based on the increment of f and
the temperature T (Line 6). The candidate sentence
xt+1 for the next step becomes xt if the proposal is
accepted, or remains xt if the proposal is rejected.
Until the maximum searching iterations, we choose
the sentence xτ that yields the highest score.

4 Experiments

4.1 Datasets

Quora. The Quora question pair dataset (Foot-
note 2) contains 140K parallel paraphrases and
additional 260K pairs of non-parallel sentences.
We follow the unsupervised setting in Miao et al.
(2019), where 3K and 20K pairs are used for vali-
dation and test, respectively.

Wikianswers. The original Wikianswers
dataset (Fader et al., 2013) contains 2.3M pairs of
question paraphrases from the Wikianswers web-
site. Since our model only involves training a lan-
guage model, we randomly selected 500K non-
parallel sentences for training. For evaluation, we
followed the same protocol as Li et al. (2019) and
randomly sampled 5K for validation and 20K for
testing. Although the exact data split in previous
work is not available, our results are comparable to
previous ones in the statistical sense.

MSCOCO. The MSCOCO dataset contains
500K+ paraphrases pairs for ∼120K image cap-
tions (Lin et al., 2014). We follow the standard
split (Lin et al., 2014) and the evaluation protocol
in Prakash et al. (2016) where only image captions
with fewer than 15 words are considered, since
some captions are extremely long (e.g., 60 words).

Twitter. The Twitter URL paraphrasing cor-
pus (Lan et al., 2017) is originally constructed for
paraphrase identification. We follow the standard
train/test split, but take 10% of the training data
as the validation set. The remaining samples are
used to train our language model. For the test set,
we only consider sentence pairs that are labeled as
“paraphrases.” This results in 566 test cases.

307

4.2 Competing Methods and Metrics

Unsupervised paraphrasing is an emerging research
topic. We would compare UPSA with recent dis-
crete and continuous sampling-based paraphrase
generators, namely, VAE, Lag VAE (He et al.,
2019), and CGMH. Early work on unsupervised
paraphrasing typically adopts rule-based meth-
ods (Mckeown, 1983; Barzilay and Lee, 2003).
Their performance could not be verified on the
above datasets, since the extracted rules are not
available. Therefore, we are unable to compare
them in this paper. Also, rule-based systems usu-
ally do not generalize well to different domains. In
the following, we describe our competing methods:

VAE. We train a variational autoencoder (VAE)
with two-layer, 300-dimensional LSTM units.
The VAE is trained with non-parallel corpora by
maximizing the variational lower bound of log-
likelihood; during inference, sentences are sampled
from the learned variational latent space (Bowman
et al., 2016).

Lag VAE. He et al. (2019) propose to aggres-
sively optimize the inference process of VAE with
more updates to address the posterior collapse
problem (Chen et al., 2017). This method has
been reported to be the state-of-the-art VAE. We
adopted the published source code and generated
paraphrases for comparison.

CGMH. Miao et al. (2019) use Metropolis–
Hastings sampling in the word space for con-
strained sentence generation. It is shown to out-
perform latent space sampling as in VAE, and is
the state-of-the-art unsupervised paraphrasing ap-
proach. We also adopted the published source code
and generated paraphrases for comparison.

We further compare UPSA with supervised
Seq2Seq paraphrase generators: ResidualL-
STM (Prakash et al., 2016), VAE-SVG-eq (Gupta
et al., 2018), Pointer-generator (See et al., 2017),
the Transformer (Vaswani et al., 2017), and the de-
composable neural paraphrase generator (DNPG,
Li et al., 2019). DNPG has been reported as the
state-of-the-art supervised paraphrase generator.

To better compare UPSA with all paraphrasing
settings, we also include domain-adapted super-
vised paraphrase generators that are trained in a
source domain but tested in a target domain, includ-
ing shallow fusion (Gulcehre et al., 2015) and multi-
task learning (MTL, Domhan and Hieber 2017).

We adopt BLEU (Papineni et al., 2002) and
ROUGE (Lin, 2004) scores as automatic metrics to

evaluate model performance. Sun and Zhou (2012)
observe that BLEU and ROUGE could not mea-
sure the diversity between the generated and the
original sentences, and propose the iBLEU variant
by penalizing by the similarity with the original
sentence. Therefore, we regard the iBLEU score
as our major metric, which is also adopted in Li
et al. (2019). In addition, we also conduct human
evaluation in our experiments (detailed later).

4.3 Implementation Details
Our method involves unsupervised language model-
ing (forward and backward), realized by two-layer
LSTM with 300 hidden units and trained specifi-
cally on each dataset with non-parallel sentences.

For hyperparameter tuning, we applied a grid
search procedure on the validation set of the Quora
dataset using the iBLEU metric. The power
weights P,Q, and S in the objective were 8, 1,
and 1, respectively, chosen from {0.5, 1, 2, . . . , 8}.

The initial temperature Tinit was chosen from
{0.5, 1, 3, 5, 7, 9} × 10−2 and set to Tinit = 3 ×
10−2 by validation. The magnitude of Tinit appears
small here, but is in fact dependent on the scale of
the objective function. The annealing rate C was
set to Tinit

#Iteration = 3× 10−4, where our number of
iterations (#Iteration) was 100.

We should emphasize that all SA hyperparame-
ters were validated only on the Quora dataset, and
we did not perform any tuning on the other datasets
(except the language model). This shows the robust-
ness of our UPSA model and its hyperparameters.

4.4 Results
Table 1 presents the performance of all competing
methods on the Quora and Wikianswers datasets.
The unsupervised methods are only trained on the
non-parallel sentences. The supervised models
were trained on 100K paraphrase pairs for Quora
and 500K pairs for Wikianswers. The domain-
adapted supervised methods are trained on one
dataset (Quora or Wikianswers), adapted using non-
parallel text on the other (Wikianswers or Quora),
and eventually tested on the latter domain (Wikian-
swers or Quora).

We observe in Table 1 that, among unsupervised
approaches, VAE and Lag VAE achieve the worst
performance on both datasets, indicating that para-
phrasing by latent space sampling is worse than
word editing. We further observe that UPSA yields
significantly better results than CGMH: the iBLEU
score of UPSA is higher than that of CGMH by 2–5

308

Quora Wikianswers

Model iBLEU BLEU Rouge1 Rouge2 iBLEU BLEU Rouge1 Rouge2

Supervised

ResidualLSTM 12.67 17.57 59.22 32.40 22.94 27.36 48.52 18.71
VAE-SVG-eq 15.17 20.04 59.98 33.30 26.35 32.98 50.93 19.11
Pointer-generator 16.79 22.65 61.96 36.07 31.98 39.36 57.19 25.38
Transformer 16.25 21.73 60.25 33.45 27.70 33.01 51.85 20.70
Transformer+Copy 17.98 24.77 63.34 37.31 31.43 37.88 55.88 23.37
DNPG 18.01 25.03 63.73 37.75 34.15 41.64 57.32 25.88

Supervised

Pointer-generator 5.04 6.96 41.89 12.77 21.87 27.94 53.99 20.85
Transformer+Copy 6.17 8.15 44.89 14.79 23.25 29.22 53.33 21.02
Shallow fusion 6.04 7.95 44.87 14.79 22.57 29.76 53.54 20.68

+ Domain-adapted MTL 4.90 6.37 37.64 11.83 18.34 23.65 48.19 17.53
MTL+Copy 7.22 9.83 47.08 19.03 21.87 30.78 54.10 21.08
DNPG 10.39 16.98 56.01 28.61 25.60 35.12 56.17 23.65

Unsupervised

VAE 8.16 13.96 44.55 22.64 17.92 24.13 31.87 12.08
Lag VAE 8.73 15.52 49.20 26.07 18.38 25.08 35.65 13.21
CGMH 9.94 15.73 48.73 26.12 20.05 26.45 43.31 16.53
UPSA 12.03 18.21 59.51 32.63 24.84 32.39 54.12 21.45

Table 1: Performance on the Quora and Wikianswers datasets. The best scores within the same training setting are
underlined. The results of supervised learning and domain-adapted supervised methods are quoted from Li et al.
(2019). We run experiments for all unsupervised methods and use the same evaluation script with Li et al. (2019)
for a fair comparison. The results of CGMH in this table is slightly different from Miao et al. (2019), because Miao
et al. (2019) use corpus-level BLEU, while Li et al. (2019) and our paper use sentence-level BLEU.

Model
MSCOCO Twitter

iBLEU BLEU Rouge1 Rouge2 iBLEU BLEU Rouge1 Rouge2

VAE 7.48 11.09 31.78 8.66 2.92 3.46 15.13 3.40
Lag VAE 7.69 11.63 32.20 8.71 3.15 3.74 17.20 3.79

CGMH 7.84 11.45 32.19 8.67 4.18 5.32 19.96 5.44
UPSA 9.26 14.16 37.18 11.21 4.93 6.87 28.34 8.53

Table 2: Performances on MSCOCO and Twitter.

points. This shows that paraphrase generation is
better modeled as an optimization process, instead
of sampling from a distribution.

It is curious to see how our unsupervised para-
phrase generator is compared with supervised ones,
should large-scale parallel data be available. Admit-
tedly, we see that supervised approaches generally
outperform UPSA, as they can learn from mas-
sive parallel data. Our UPSA nevertheless achieves
comparable results with the recent ResidualLSTM
model (Prakash et al., 2016), reducing the gap be-
tween supervised and unsupervised paraphrasing.

In addition, our UPSA could be easily applied
to new datasets and new domains, whereas the su-
pervised setting does not generalize well. This is
shown by a domain adaptation experiment, where
a supervised model is trained on one domain
but tested on the other. We notice in Table 1
that the performance of supervised models (e.g.,
Transformer+Copy) decreases drastically on out-of-

domain sentences, even if both Quora and Wikian-
swers are question sentences. The performance is
supposed to decrease further if the source and target
domains are more different. UPSA outperforms all
supervised domain-adapted paraphrase generators
(except DNPG on the Wikianswers dataset).

Table 2 shows model performance on MSCOCO
and Twitter corpora. These datasets are less used
for paraphrase generation than Quora and Wikian-
swers, and thus we could only compare unsuper-
vised approaches by running existing code bases.
Again, we see the same trend as Table 1: UPSA
achieves the best performance, CGMH second, and
VAEs worst. It is also noted that the Twitter corpus
yields lower iBLEU scores for all models, largely
due to the noise of Twitter utterances (Lan et al.,
2017). However, the consistent results demonstrate
that UPSA is robust and generalizable to different
domains (without hyperparameter re-tuning).

Human Evaluation. We also conducted human

309

Model
Relevance Fluency

Mean Score Agreement Mean Score Agreement

VAE 2.65 0.41 3.23 0.51
Lag VAE 2.81 0.45 3.25 0.48
CGMH 3.08 0.36 3.51 0.49
UPSA 3.78 0.55 3.66 0.53

Table 3: Human evaluation on the Quora dataset.

evaluation on the generated paraphrases. Due to
the limit of budget and resources, we sampled 300
sentences from the Quora test set and only com-
pared the unsupervised methods (which is the main
focus of our work). Selecting a subset of models
and data samples is a common practice for human
evaluation in previous work (Wang et al., 2019).

We asked three human annotators to evaluate the
generated paraphrases in terms of relevance and
fluency; each aspect was scored from 1 to 5. We
report the average human scores and the Cohen’s
kappa score (Cohen, 1960). It should be empha-
sized that our human evaluation was conducted in
a blind fashion. Table 3 shows that UPSA achieves
the highest human satisfaction scores in terms of
both relevance and fluency, and the kappa scores in-
dicate moderate inter-annotator agreement (Landis
and Koch, 1977). The results are also consistent
with the automatic metrics in Tables 1 and 2. We
further conducted two-sided Wilcoxon signed rank
tests. The improvement of UPSA is statistically sig-
nificant with p < 0.01 in both aspects, compared
with both competing methods.

4.5 Model Analysis

We analyze UPSA in more detail on the most
widely-used Quora dataset, with a test subset of
2000 samples.

Ablation Study. We first evaluate the searching
objective function (2) in Lines 1–4 of Table 4. The
results show that each component of our objective
(namely, keyword similarity, sentence similarity,
and expression diversity) does play its role in para-
phrase generation.

Line 5 of Table 4 shows the effect of our copy
mechanism, which is used in word replacement
and insertion. It yields roughly one iBLEU score
improvement if we keep sampling those words in
the original sentence.

Finally, we test the effect of the temperature de-
cay in SA. Line 6 shows the performance if we fix
the initial temperature during the whole searching
process, which is similar to Metropolis–Hastings

Line # UPSAVariant iBLEU BLEU Rouge1 Rouge2

1 UPSA 12.41 18.48 57.06 31.39

2 w/o fsim,key 10.28 15.34 50.85 26.42
3 w/o fsim,sen 11.78 17.95 57.04 30.80
4 w/o fexp 11.93 21.17 59.75 34.91
5 w/o copy 11.42 17.25 56.09 29.73
6 w/o annealing 10.56 16.52 56.02 29.25

Table 4: Ablation study.

9.00

11.00

13.00

15.00

17.00

19.00

0 0.05 0.1 0.15 0.2

Pe
rf

o
rm

an
ce

Initial Temperature

BLEU

iBLEU

Figure 2: Analysis of the initial temperature Tinit. The
dashed line illustrates the selected hyperparameter in
validation.

sampling.3 The result shows the importance of the
annealing schedule. It also verifies our intuition
that sentence generation (in particular, paraphras-
ing in this paper) should be better modeled as a
searching problem than a sampling problem.

Analysis of the Initial Temperature. We
fixed the decreasing rate to C = 1 × 10−4

and chose the initial temperature Tinit from
{0, 0.5, 1, 3, 5, 7, 9, 11, 15, 21} × 10−2. In particu-
lar, Tinit = 0 is equivalent to hill climbing (greedy
search). The trend is plotted in Figure 2.

It is seen that a high temperature yields worse
performance (with other hyperparameters fixed),
because in this case UPSA accepts more worse
sentences and is less likely to settle down. On the
other hand, a low temperature makes UPSA greed-
ier, also resulting in worse performance. Especially,
our simulated annealing largely outperforms greedy
search, whose temperature is 0.

We further observe that BLEU and iBLEU peak
at different values of the initial temperature. This
is because a lower temperature indicates a greedier
strategy with less editing, and if the input sentence
is not changed much, we may indeed have a higher
BLEU score. But our major metric iBLEU pe-
nalizes the similarity to the input and thus prefers

3The Metropolis–Hastings sampler computes its accep-
tance rate in a slightly different way from Eqn. (1).

310

Input VAE Lag VAE CGMH UPSA
where are best places
for spring snowboard-
ing in the us?

where are best places for
running in the world? (3.33)

where are best places for
honeymoon year near the
us? (2.33)

where is best store for the
snowboarding in the US?
(3.67)

where can I find the best
places in the US for snow-
boarding? (4.67)

how can i become good
in studies?

how can i have a good an-
droid phone? (2.33)

how can i become good
students? (4.33)

how can i become very rich
in studies? (4.00)

how should i do to get better
grades in my studies? (4.33)

what are the pluses and
minuses about life as a
foreigner in singapore?

what are the UNK and most
interesting life as a foreigner
in medieval greece? (2.33)

what are the UNK and in-
teresting things about life
as a foreigner? (2.33)

what are the misconception
about UNK with life as a
foreigner in western? (2.33)

what are the mistakes and
pluses life as a foreigner in
singapore? (2.67)

Table 5: Example paraphrases generated by different methods on the Quora dataset. The averaged score evaluated
by three annotators is shown at the end of each generated sentence.

a higher temperature. We chose Tinit = 0.03 by
validating on iBLEU.

Case Study. We showcase several generated
paraphrases in Table 5. We see qualitatively that
UPSA can produce more reasonable paraphrases
than the other methods in terms of both close-
ness in meaning and difference in expressions, and
can make non-local transformations. For example,
“places for spring snowboarding in the US” is para-
phrased as “places in the US for snowboarding.”
Admittedly, such samples are relatively rare, and
our current UPSA mainly synthesizes paraphrases
by editing words in the sentence, whereas the syn-
tax is mostly preserved. This is partially due to the
difficulty of exploring the entire (discrete) sentence
space even by simulated annealing, and partially
due to the insensitivity of the similarity objective
given two very different sentences.

5 Conclusion and Future Work

In this paper, we proposed a novel unsupervised
approach UPSA that generates paraphrases by sim-
ulated annealing. Experiments on four datasets
show that UPSA outperforms previous state-of-the-
art unsupervised methods to a large extent.

In the future, we plan to apply the SA framework
on syntactic parse trees in hopes of generating more
syntactically different sentences (motivated by our
case study).

Acknowledgments

We thank the anonymous reviewers for their insight-
ful suggestions. This work was supported in part
by the Beijing Innovation Center for Future Chip.
Lili Mou is supported by AltaML, the Amii Fel-
low Program, and the Canadian CIFAR AI Chair
Program; he also acknowledges the support of the
Natural Sciences and Engineering Research Coun-
cil of Canada (NSERC), RGPIN-2020-04465. Sen
Song is the corresponding author of this paper.

References
Peter Anderson, Basura Fernando, Mark Johnson, and

Stephen Gould. 2017. Guided open vocabulary im-
age captioning with constrained beam search. In
EMNLP, pages 936–945.

Yu Bao, Hao Zhou, Shujian Huang, Lei Li, Lili Mou,
Olga Vechtomova, Xin-yu Dai, and Jiajun Chen.
2019. Generating sentences from disentangled syn-
tactic and semantic spaces. In ACL, pages 6008–
6019.

Regina Barzilay and Lillian Lee. 2003. Learning
to paraphrase: An unsupervised approach using
multiple-sequence alignment. In ACL, pages 16–23.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2016. Generating sentences from a continuous
space. In CoNLL, pages 10–21.

Xi Chen, Diederik P Kingma, Tim Salimans, Yan Duan,
Prafulla Dhariwal, John Schulman, Ilya Sutskever,
and Pieter Abbeel. 2017. Variational lossy autoen-
coder. ICLR.

Jacob Cohen. 1960. A coefficient of agreement for
nominal scales. Educational and Psychological
Measurement, 20(1):37–46.

Bill Dolan, Chris Quirk, and Chris Brockett. 2004. Un-
supervised construction of large paraphrase corpora:
Exploiting massively parallel news sources. In COL-
ING, pages 350–356.

Tobias Domhan and Felix Hieber. 2017. Using target-
side monolingual data for neural machine transla-
tion through multi-task learning. In EMNLP, pages
1500–1505.

Yue Dong, Zichao Li, Mehdi Rezagholizadeh, and
Jackie Chi Kit Cheung. 2019. EditNTS: An neural
programmer-interpreter model for sentence simplifi-
cation through explicit editing. In ACL, pages 3393–
3402.

Stefan Edelkamp and Stefan Schroedl. 2011. Heuristic
Search: Theory and Applications. Elsevier.

Michael Ellsworth and Adam Janin. 2007. Mutaphrase:
Paraphrasing with framenet. In Proc. ACL-PASCAL
Workshop on Textual Entailment and Paraphrasing,
pages 143–150.

https://www.aclweb.org/anthology/D17-1098
https://www.aclweb.org/anthology/D17-1098
https://doi.org/10.18653/v1/P19-1602
https://doi.org/10.18653/v1/P19-1602
https://www.aclweb.org/anthology/N03-1003
https://www.aclweb.org/anthology/N03-1003
https://www.aclweb.org/anthology/N03-1003
https://www.aclweb.org/anthology/K16-1002
https://www.aclweb.org/anthology/K16-1002
https://openreview.net/pdf?id=BysvGP5ee
https://openreview.net/pdf?id=BysvGP5ee
https://doi.org/10.1177%2F001316446002000104
https://doi.org/10.1177%2F001316446002000104
https://www.aclweb.org/anthology/C04-1051
https://www.aclweb.org/anthology/C04-1051
https://www.aclweb.org/anthology/C04-1051
https://www.aclweb.org/anthology/D17-1158
https://www.aclweb.org/anthology/D17-1158
https://www.aclweb.org/anthology/D17-1158
https://www.aclweb.org/anthology/P19-1331
https://www.aclweb.org/anthology/P19-1331
https://www.aclweb.org/anthology/P19-1331
https://doi.org/10.1016/C2009-0-16511-X
https://doi.org/10.1016/C2009-0-16511-X
https://www.aclweb.org/anthology/W07-1424
https://www.aclweb.org/anthology/W07-1424

311

Anthony Fader, Luke Zettlemoyer, and Oren Etzioni.
2013. Paraphrase-driven learning for open question
answering. In ACL, pages 1608–1618.

Vincent Granville, Mirko Krivanek, and Jeanpaul Ras-
son. 1994. Simulated annealing: a proof of conver-
gence. TPAMI, 16(6):652–656.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK
Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. In ACL, pages
1631–1640.

Caglar Gulcehre, Orhan Firat, Kelvin Xu, Kyunghyun
Cho, Loic Barrault, Huei-Chi Lin, Fethi Bougares,
Holger Schwenk, and Yoshua Bengio. 2015. On us-
ing monolingual corpora in neural machine transla-
tion. arXiv preprint arXiv:1503.03535.

Ankush Gupta, Arvind Agarwal, Prawaan Singh, and
Piyush Rai. 2018. A deep generative framework for
paraphrase generation. In AAAI, pages 5149–5156.

Kelvin Guu, Tatsunori B Hashimoto, Yonatan Oren,
and Percy Liang. 2018. Generating sentences by
editing prototypes. TACL, 6:437–450.

Junxian He, Daniel Spokoyny, Graham Neubig, and
Taylor Berg-Kirkpatrick. 2019. Lagging inference
networks and posterior collapse in variational au-
toencoders. In ICLR.

Chii-Ruey Hwang. 1988. Simulated annealing: theory
and applications. Acta Applicandae Mathematicae,
12(1):108–111.

S. Kirkpatrick, C. D. Gelatt, and M. P. Vecchi. 1983.
Optimization by simulated annealing. Science,
220(4598):671–680.

Kevin Knight and Daniel Marcu. 2000. Statistics-
based summarization step one: Sentence compres-
sion. In AAAI, pages 703–710.

Dhruv Kumar, Lili Mou, Lukasz Golab, and Olga Vech-
tomova. 2020. Iterative edit-based unsupervised sen-
tence simplification. In ACL.

Wuwei Lan, Siyu Qiu, Hua He, and Wei Xu. 2017.
A continuously growing dataset of sentential para-
phrases. In EMNLP, pages 1224–1234.

J. Richard Landis and Gary G. Koch. 1977. The mea-
surement of observer agreement for categorical data.
Biometrics, 33(1):159–174.

Zichao Li, Xin Jiang, Lifeng Shang, and Hang Li.
2018. Paraphrase generation with deep reinforce-
ment learning. In EMNLP, pages 3865–3878.

Zichao Li, Xin Jiang, Lifeng Shang, and Qun Liu.
2019. Decomposable neural paraphrase generation.
In ACL, pages 3403–3414.

Chin-Yew Lin. 2004. Rouge: A package for automatic
evaluation of summaries. In Proc. Workshop on Text
Summarization Branches Out, pages 74–81.

Tsungyi Lin, Michael Maire, Serge J Belongie, James
Hays, Pietro Perona, Deva Ramanan, Piotr Dollar,
and C Lawrence Zitnick. 2014. Microsoft COCO:
Common objects in context. In ECCV, pages 740–
755.

Kathleen R Mckeown. 1983. Paraphrasing questions
using given and new information. Computational
Linguistics, 9(1):1–10.

Nicholas Metropolis, Arianna W Rosenbluth, Mar-
shall N Rosenbluth, Augusta H Teller, and Ed-
ward Teller. 1953. Equation of state calculations
by fast computing machines. J. Chemical Physics,
21(6):1087–1092.

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, and
Lei Li. 2019. Constrained sentence generation by
Metropolis–Hastings sampling. In AAAI, pages
6834–6842.

Shashi Narayan, Siva Reddy, and Shay B Cohen. 2016.
Paraphrase generation from latent-variable PCFGs
for semantic parsing. In INLG, pages 153–162.

Julia Neidert, Sebastian Schuster, Spence Green, Ken-
neth Heafield, and Christopher Manning. 2014.
Stanford University’s submissions to the WMT
2014 translation task. In Proc. 9th Workshop on Sta-
tistical Machine Translation, pages 150–156.

Aaron Van den Oord, Oriol Vinyals, et al. 2017. Neu-
ral discrete representation learning. In NIPS, pages
6306–6315.

Matteo Pagliardini, Prakhar Gupta, and Martin Jaggi.
2017. Unsupervised learning of sentence embed-
dings using compositional n-gram features. In
NAACL, pages 528–540.

Kishore Papineni, Salim Roukos, Todd Ward, and Wei-
Jing Zhu. 2002. BLEU: a method for automatic eval-
uation of machine translation. In ACL, pages 311–
318.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. GloVe: global vectors for word rep-
resentation. In EMNLP, pages 1532–1543.

Aaditya Prakash, Sadid A Hasan, Kathy Lee, Vivek
Datla, Ashequl Qadir, Joey Liu, and Oladimeji Farri.
2016. Neural paraphrase generation with stacked
residual LSTM networks. In COLING, pages 2923–
2934.

Chris Quirk, Chris Brockett, and William Dolan. 2004.
Monolingual machine translation for paraphrase
generation. In EMNLP, pages 142–149.

Stuart Rose, Dave Engel, Nick Cramer, and Wendy
Cowley. 2010. Automatic keyword extraction from
individual documents. Text Mining: Applications
and Theory, 1:1–20.

Aurko Roy and David Grangier. 2019. Unsupervised
paraphrasing without translation. In ACL, pages
6033–6039.

https://www.aclweb.org/anthology/P13-1158
https://www.aclweb.org/anthology/P13-1158
https://doi.org/10.1109/34.295910
https://doi.org/10.1109/34.295910
https://www.aclweb.org/anthology/P16-1154/
https://www.aclweb.org/anthology/P16-1154/
https://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1503.03535
https://arxiv.org/abs/1709.05074
https://arxiv.org/abs/1709.05074
https://www.aclweb.org/anthology/Q18-1030
https://www.aclweb.org/anthology/Q18-1030
https://arxiv.org/abs/1901.05534
https://arxiv.org/abs/1901.05534
https://arxiv.org/abs/1901.05534
https://doi.org/10.1007/978-94-015-7744-1
https://doi.org/10.1007/978-94-015-7744-1
https://doi.org/10.1126/science.220.4598.671
https://aaai.org/Library/AAAI/2000/aaai00-108.php
https://aaai.org/Library/AAAI/2000/aaai00-108.php
https://aaai.org/Library/AAAI/2000/aaai00-108.php
https://www.aclweb.org/anthology/D17-1126
https://www.aclweb.org/anthology/D17-1126
http://www.jstor.org/stable/2529310
http://www.jstor.org/stable/2529310
https://www.aclweb.org/anthology/D18-1421/
https://www.aclweb.org/anthology/D18-1421/
https://www.aclweb.org/anthology/P19-1332
https://www.aclweb.org/anthology/W04-1013
https://www.aclweb.org/anthology/W04-1013
https://doi.org/10.1007/978-3-319-10602-1_48
https://doi.org/10.1007/978-3-319-10602-1_48
https://www.aclweb.org/anthology/J83-1001
https://www.aclweb.org/anthology/J83-1001
https://doi.org/10.1063/1.1699114
https://doi.org/10.1063/1.1699114
https://doi.org/10.1609/aaai.v33i01.33016834
https://doi.org/10.1609/aaai.v33i01.33016834
https://www.aclweb.org/anthology/W16-6625
https://www.aclweb.org/anthology/W16-6625
https://www.aclweb.org/anthology/W14-3316
https://www.aclweb.org/anthology/W14-3316
http://papers.nips.cc/paper/5950-skip-thought-vectors
http://papers.nips.cc/paper/5950-skip-thought-vectors
https://www.aclweb.org/anthology/N18-1049
https://www.aclweb.org/anthology/N18-1049
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/P02-1040
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/D14-1162
https://www.aclweb.org/anthology/C16-1275
https://www.aclweb.org/anthology/C16-1275
https://www.aclweb.org/anthology/W04-3219
https://www.aclweb.org/anthology/W04-3219
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.1002/9780470689646.ch1
https://doi.org/10.18653/v1/P19-1605
https://doi.org/10.18653/v1/P19-1605

312

Raphael Schumann, Lili Mou, Yao Lu, Olga Vechto-
mova, and Katja Markert. 2020. Discrete optimiza-
tion for unsupervised sentence summarization with
word level extraction. In ACL.

Abigail See, Peter J Liu, and Christopher D Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In ACL, pages 1073–1083.

Pararth Shah, Dilek Hakkani-Tür, Bing Liu, and
Gokhan Tür. 2018. Bootstrapping a neural conver-
sational agent with dialogue self-play, crowdsourc-
ing and on-line reinforcement learning. In NAACL,
pages 41–51.

Hong Sun and Ming Zhou. 2012. Joint learning of a
dual SMT system for paraphrase generation. In ACL,
pages 38–42.

Christoph Tillmann, Stephan Vogel, Hermann Ney,
A. Zubiaga, and Hassan Sawaf. 1997. Accelerated
DP based search for statistical translation. In EU-
ROSPEECH, pages 2667–2670.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NIPS, pages 5998–6008.

Su Wang, Rahul Gupta, Nancy Chang, and Jason
Baldridge. 2019. A task in a suit and a tie: Para-
phrase generation with semantic augmentation. In
AAAI, pages 7176–7183.

John Wieting and Kevin Gimpel. 2017. ParaNMT-
50M: Pushing the limits of paraphrastic sentence em-
beddings with millions of machine translations. In
ACL, pages 451–462.

Xinyuan Zhang, Yi Yang, Siyang Yuan, Dinghan Shen,
and Lawrence Carin. 2019. Syntax-infused vari-
ational autoencoder for text generation. In ACL,
pages 2069–2078.

Jiawei Zhou and Alexander Rush. 2019. Simple unsu-
pervised summarization by contextual matching. In
ACL, pages 5101–5106.

https://www.aclweb.org/anthology/P17-1099
https://www.aclweb.org/anthology/P17-1099
https://doi.org/10.18653/v1/N18-3006
https://doi.org/10.18653/v1/N18-3006
https://doi.org/10.18653/v1/N18-3006
https://www.aclweb.org/anthology/P12-2008
https://www.aclweb.org/anthology/P12-2008
https://www.isca-speech.org/archive/archive_papers/eurospeech_1997/e97_2667.pdf
https://www.isca-speech.org/archive/archive_papers/eurospeech_1997/e97_2667.pdf
http://papers.nips.cc/paper/7181-attention-is-all-you-need
http://papers.nips.cc/paper/7181-attention-is-all-you-need
https://wvvw.aaai.org/ojs/index.php/AAAI/article/view/4701
https://wvvw.aaai.org/ojs/index.php/AAAI/article/view/4701
https://www.aclweb.org/anthology/P18-1042/
https://www.aclweb.org/anthology/P18-1042/
https://www.aclweb.org/anthology/P18-1042/
https://doi.org/10.18653/v1/P19-1199
https://doi.org/10.18653/v1/P19-1199
https://doi.org/10.18653/v1/P19-1503
https://doi.org/10.18653/v1/P19-1503

