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A Little History about Neural Networks

• Perceptions

• Multi-layer neural networks
Model capacity
Inefficient representations
The curse of dimensionality

• Early attempts for deep neural networks
Optimization and generalization

• One of the few successful deep architectures: Convolutional Neural networks

• Successful pretraining methods
Deep belief nets
Autoencoders
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Stacked Restricted Boltzmann Machines and Deep Belief Net

Stacked Boltzmann Machines and Deep belief nets are
successful pretraining architectures for deep neural networks.

Learning a deep neural network has two stages:

1. Pretrain the model unsupervisedly

2. Initialize the weights in feed-forward neural networks as have been pretrained

Lili Mou | SEKE Team 6/50



Preliminary
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Bayesian Networks

A bayesian network is

• A directed acyclic graph G (DAG), whose nodes correspond to the random
variables X1, X2, · · · , Xn.

• For each node Xi, we have a conditional probabilistic distribution (CPD)
P(Xi|ParG(Xi))

The joint distribution is

P(X) =
n∏
i=1

P(Xi|ParG(Xi))
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Dependencies and Conditional Dependencies

Is X independent of Y given evidence Z?
• X → Y

• X ← Y

• X →W → Y

• X ←W ← Y

• X ←W → Y

• X →W ← Y

Definition (Active trail) X1 −X2 −Xn is active give Z iff
• For any v-structure Xi−1 → Xi ← Xi+1, we have Xi or one of its

descendents ∈ Z
• No other Xi is in Z

Definition (d-separation): X and Y are d-separated given evidence Z if there
is no active trail from X to Y given Z.
Theorem d-separation ⇒ (conditional) independency
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Reasoning Patterns

3 typical reasoning patterns:

1. Causal Reasoning (Prediction)
Predict “downstream” effects of various factors.

2. Evidential Reasoning (Explanation)
Reason from effects to causes

3. Intercausal Reasoning (Explaining away)
More tricky. The intuition is:
Both flu and cancer cause fevers. When we have a fever, if we know that
we have a flu, the probability of a cancer declines.
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Markov Networks

Factors: Φ = {φ1(D1), · · · , φk(Dk)}
φi is a factor over scope Di ⊆ {X1 · · ·Xn}

Unnormalized measure: P̃Φ(X1, · · · , Xn) =
k∏
i=1

φi(Di)

Partition function: ZΦ =
∑

X1,··· ,Xn

P̃Φ(X1, · · · , Xn)

Joint probabilistic distribution: PΦ(X1, · · · , Xn) = 1
Z
P̃Φ(X1, · · · , Xn)
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Conditional Random Fields

Factors: Φ = {φ1(X,Y ), · · · , φk(X,Y )}

Unnormalized measure: P̃Φ(Y |X) =
k∏
i=1

φi(Di)

Partition function: ZΦ(X) =
∑
Y

P̃Φ(Y |X)

Conditional probabilistic distribution: PΦ(Y |X) = 1
Zφ(X) P̃Φ(Y |X)
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Inference for Probabilistic Graphical Models

• Exact inference, e.g., clique tree calibration
• Sampling methods, e.g., Gibbs sampling, Metropolis Hastings algorithms
• Variational inference

Gibbs sampling
Posterior distributions P(Xi|X−i) known, give an unbiased sample of P(X)
Wait until mixed {

Loop over i {
xi ∼ P(Xi|X−i)

}
}
In probabilistic graphical models, P(Xi|X−i) is easy to compute, which is only
related to local factors.
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Parameter Learning for Bayesian Networks

• Supervised learning, all variables are known in the training set
– Maximum likelihood estimation
– Max a posteriori

• Unsupervised/Semisupervised learning, some variables are unknown for
at least some training samples

– Expectation maximum
Loop {
1. Estimate the probability of the unknown variables
2. Estimate the parameters of the Bayesian network (MLE/MAP)

}

N.B.: Inference is required for un-/semi-supervised learning
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Parameter Learning for MRF/CRF

Rewrite the joint probability as

P(X) = 1
Z

exp
{∑

i

θifi(X)
}

MLE estimation with gradient based methods

∂ logP
∂θi

= Edata[fi]− Emodel[fi]

N.B.: Inference is required during each iteration of learning
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Boltzmann Machines and RBMs
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Boltzmann Machines

We have visible variables v and hidden variables h. Both v and h are binary
Define energy function

E(v,h) = −
∑
i

bivi −
∑
j

bkhk −
∑
i<j

wi,jvivj −
∑
i,k

wikvihk −
∑
k<l

wklhkhl

Define probability
P(v,h) = 1

Z
exp {−E(v,h)}

where
Z =

∑
v,h

P(v,h)
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Boltzmann Machines as Markov Networks

Two types of factors

1. Biases.
xi φ(xi)
0 1
1 log bi

2. Pairwise factors.

xi xj φ(xi, yj)
0 0 1
0 1 1
1 0 1
1 1 logwi,j

Lili Mou | SEKE Team 18/50



Maximum Likelihood Estimation

∇θi(− logL(Θ)) = Edata[fi]− Emodel[fi]
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Training BMs

• Brute-force (intractable)

• MCMC
pi ≡ P(si|s−i) = σ(−

∑
j

sjwji − bi)

• Warm starting
Keep the h(i) as “particles” for each training sample x(i)

Run the Markov chain only a few times after each weight update

• Mean-field approximation

pi = σ(−
∑
j

pjwji − bi)
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Restricted Boltzmann Machines (RBM)

To achieve better training, we add constraints to our model
1. Only one hidden layer and one visible layer
2. No hidden connections
3. No visible connections (which also marginalized out in BMs)

Our model becomes a complete bipartite graph
Nice properties:

• hi ⊥ hj |v

• vi ⊥ vj |h

The learning will be much faster

• Edata[vihj ] can be computed within exactly one matrix multiplication

• Emodel[vihj ] is also easier to compute because the Gibbs sampling becomes
h|v ⇒ v|h⇒ h|v · · ·

Lili Mou | SEKE Team 21/50



Contrastive Divergence Learning Algorithm

• MCMC:
∆wij = α(< vihj >

0 − < vihj >
∞)

• CK-k
∆wij = α(< vihj >

0 − < vihj >
k)

The crazy idea: Do things wrongly and hope it works.
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Why does it work at all? When does it fail?

Why does it work at all?
• Start from the data, Markov chain wanders away from the current data

towards things that it likes more.
• Perhaps, we only need one or a few steps to know the direction to the

stationary distribution.

When does it fail?
• When the current low energy space is far away from any data points.

A good compromise
• CD-1 ⇒ CD-3 ⇒ CD-k
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Exploring “Deep” Structures

• Deep Boltzmann machines (DBM): Boltz-
mann machines with multiple hidden layers

• Learning: Following the learning rules of
BMs, sample hidden units once a half of
the net

What if we train layer by layer greedily?

Lili Mou | SEKE Team 24/50



Deep Belief Nets
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Belief Nets

Consider a generative process that generates our data x in a causal fashion

The conditional probabilistic distribution is in the form

pi ≡ P(si = 1) = σ(−bi −
∑
j

sjwji) = 1
1 + exp

{
−bi −

∑
j sjwji

}
where wji and bi are the weights to be learned.
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Learning DBNs

The learning process would be easy if we could
get unbiased samples si

∆wji = αsj(si − pi)
However, it is intractable to get unbiased sam-
ples for a deep, densely-connected Bayesian net-
work

• Posterior not factorial even with only one
hidden layer (the phenomenon of “explain-
ing away”)

• Posterior depends on the prior as well as
likelihood

⇒ All the weights interact.
• Even worse, to compute the prior of one

layer, we need to marginalize out all the
hidden layers above.
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Some Algorithms for Learning DBNs

• Using Markov chain Monto Carlo methods (Neal, 1992)

• Variational methods to get approximate samples from the posterior (1990’s)

The crazy idea: Do things wrongly and hope it works!
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The Wake-Sleep Algorithm
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The Wake-Sleep Algorithm (Hinton, 1995)

Basic idea: ignore “explaining away”

• Wake phase: Use recognition weights
R = P(Y |X) to perform a bottom-up
pass, and learn the generative weights

• Sleep phase: Use generative weights
W = P(X|Y ) to generate samples
from the model, and learn the recog-
nition weights

N.B.: The recognition weights are not part
of the generative model
Recall: Edata and Edata
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BNs and RBMs
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A BIG SURPRISE

RBM

||

BN with infinite layers with tied weights
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The Intuition
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Complementarity Prior

Factorial posterior, i.e., P(x|y) =
∏
i P(xi|y) and P(y|x) =

∏
i P(yi|x)

⇔ Independent set {yi ⊥ yk|x, xi ⊥ xj |y}

⇔ (Assume positivity)

P(x,y) = 1
Z

exp

∑
i,j

ψi,j(xi, yj) +
∑
i

γi(xi) +
∑
j

αj(yj)


Can be extended to infinite layers within a-few-line derivations
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CD Learning Revisit

• CD-k: Ignore the “explaining away” phenomenon by ignoring the small
derivatives contributed by the tied weights in higher layers

• When weights are small, Markov chain will be mixed soon.

• When weights get larger, run more iterations of CD.

• Good news:
For multi-layer feature learning (in DBNs), it is just OK to use CD-1.

(why?)
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Stacked RBM

What if we train stacked RBMs layer by layer greedily?
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Stacked RBM and BNs

• Prior does not cancel exactly the “explaining away” effect

• Do things wrongly anyway

• It can be proved that, a variational bound of the likelihood will improve
whenever we add a new hidden layer.
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Deep Belief Nets

Deep Belief Nets, a hybrid model of directed and undirected graph

Learning, given data D
• Learn stacked RBMs layer by layer greedily

with CD-1
• Fine-tuning by the wake and sleep algorithm

(why?)
Reconstructing data

• Start from random configurations of the top
two layers

• Run the Markov chain for a long time
• Generate lower layers (including the data) in

a causal fashion
⇒ Theoretically incorrect, but works well
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Examples
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RBM Modeling MNIST Data

Modeling ’2’

Modeling all 10 digits

. . .
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RBM for Collaborative Filtering

• RBM works about as good as matrix factorization, but gives different errors

• Combining RBM and MF is a big win ($1,000,000)
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DBM Modeling MNIST Data
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DBN Classifying MNIST Digits

• Pretraining
Training stacked RBMs layer by layer greedily
Fine-tuning with wake and sleep algorithm

• Supervised learning
Regard the DBN as a feed-forward neural network
Fine-tuning the connection weights
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Results
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Even More Results
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What happens when fine-tuning?
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Thanks for listening!


