Gaussian Processes: An Introduction

Lili MOU

moull12@sei.pku.edu.cn http://sei.pku.edu.cn/~moull12

9 April 2015

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Introduction

Kernel Tricks

Gaussian Processes for Regression

Bayesian Linear Regression

Outline

Introduction

Kernel Tricks

Gaussian Processes for Regression

Bayesian Linear Regression

• Let Z_t be a Gaussian distribution with mean μ_t and standard deviation σ_t ($t \in T$).

▶ Let Z_t be a Gaussian distribution with mean μ_t and standard deviation σ_t ($t \in T$).

$$\rho(z_t) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-\frac{(x-\mu_t)^2}{2\sigma_t^2}\right\}$$

► Let Z_t be a Gaussian distribution with mean μ_t and standard deviation σ_t ($t \in T$).

$$p(z_t) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-\frac{(x-\mu_t)^2}{2\sigma_t^2}\right\}$$

▶ If Z independent, what is the joint distribution of Z_{i_1}, \dots, Z_{i_n} ?

Let Z_t be a Gaussian distribution with mean μ_t and standard deviation σ_t (t ∈ T).

$$p(z_t) = rac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-rac{(x-\mu_t)^2}{2\sigma_t^2}
ight\}$$

▶ If Z independent, what is the joint distribution of Z_{i_1}, \dots, Z_{i_n} ?

$$(Z_{i_1},\cdots,Z_{i_n})^T\sim\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$$

where $\boldsymbol{\mu} = (\mu_{i_1}, \cdots, \mu_{i_n})^T, \boldsymbol{\Sigma} = \text{diag}\{\sigma_{i_1}, \cdots, \sigma_{i_n}\}$

$$p(\mathbf{z}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left\{-\frac{1}{2}(\mathbf{z}-\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{z}-\boldsymbol{\mu})\right\}$$

If Z dependent, what it the joint distribution?

Let Z_t be a Gaussian distribution with mean μ_t and standard deviation σ_t (t ∈ T).

$$p(z_t) = \frac{1}{\sqrt{2\pi\sigma_t^2}} \exp\left\{-\frac{(x-\mu_t)^2}{2\sigma_t^2}\right\}$$

▶ If Z independent, what is the joint distribution of Z_{i_1}, \cdots, Z_{i_n} ?

$$(Z_{i_1},\cdots,Z_{i_n})^T\sim\mathcal{N}(\boldsymbol{\mu},\boldsymbol{\Sigma})$$

where $\boldsymbol{\mu} = (\mu_{i_1}, \cdots, \mu_{i_n})^T, \boldsymbol{\Sigma} = \text{diag}\{\sigma_{i_1}, \cdots, \sigma_{i_n}\}$

$$p(\mathbf{z}) = \frac{1}{\sqrt{(2\pi)^n |\Sigma|}} \exp\left\{-\frac{1}{2}(\mathbf{z}-\boldsymbol{\mu})^T \Sigma^{-1}(\mathbf{z}-\boldsymbol{\mu})\right\}$$

▶ If Z dependent, what it the joint distribution? Recall copulas.

Definition. A stochastic process is a set of random variables $\{Z_t\}$, $t \in \mathcal{T}$. \mathcal{T} is called an *index set*.

- Trivial process: Z_t independent
- Brownian process
- Poisson process

The relationships between Z_t are a distinguishing feature in the field of stochastic processes.

Definition. A Gaussian process $\{Z_t\}$, $(t \in \mathcal{T})$ is a stochastic process, each subset of $\{Z_t\}$ forming a (multivariate) Gaussian.

Definition. A Gaussian process $\{Z_t\}$, $(t \in \mathcal{T})$ is a stochastic process, each subset of $\{Z_t\}$ forming a (multivariate) Gaussian.

A minor question: Why not model $\{Z_t\}$ directly as a multivariate Gaussian?

Definition. A Gaussian process $\{Z_t\}$, $(t \in \mathcal{T})$ is a stochastic process, each subset of $\{Z_t\}$ forming a (multivariate) Gaussian.

A minor question: Why not model $\{Z_t\}$ directly as a multivariate Gaussian?

- ► *T* may have infinite elements (or even uncountable).
- What computers can deal with is finite Gaussian processes, degraded to multivariate Gaussian distributions.

An Example

Random lines: $\mathcal{T} = \mathbb{R}$. $\forall t \in \mathcal{T}$, let $Z_t = t \cdot w$, where $w \in \mathbb{R}$ and $w \sim \mathcal{N}(w|0,1)$

$$\begin{pmatrix} z_{t_1} \\ \vdots \\ z_{t_n} \end{pmatrix} = \begin{pmatrix} t_1 w \\ \vdots \\ t_n w \end{pmatrix} = \begin{pmatrix} t_1 \\ \vdots \\ t_n \end{pmatrix} w \sim \mathcal{N}$$

(日)、

э

This GP defines a linear function on \mathbb{R} .

A Big Picture

Consider a regression problem. Let a GP $\{Z_t\}$ define a random function (not necessarily linear), where t comes from an arbitrary index set T of the input space.

[Source: NIPS-06's talk]

A prospective of Bayesianism

Outline

Introduction

Kernel Tricks

Gaussian Processes for Regression

Bayesian Linear Regression

Existence of Gaussian Processes

Theorem. For any index set \mathcal{T} , any mean function $\mu : \mathcal{T} \to \mathbb{R}$ and any covariance function $k : \mathcal{T} \times \mathcal{T} \to \mathcal{R}$, there exists a Gaussian process $\{Z_t\}$ on \mathcal{T} such that $\mathbb{E}[Z_t] = \mu(t)$ and $\operatorname{cov}(Z_s, Z_t) = k(s, t), \forall s, t \in \mathcal{T}.$

- \Rightarrow A Gaussian process is fully characterized by μ and k.
 - k is also called a kernel function.
 - ▶ When evaluated on a finite subset, k defines a kernel matrix K.
 - Mercer's Theorem: If K is symmetric and positive semi-definite, then K can be represented as an inner-product in some Hilbert space.

Random Line Revisit

$$\mathcal{T} = \mathbb{R}. \ \forall t \in \mathcal{T}, \ Z_t = t \cdot w, \text{ where } w \sim \mathcal{N}(w|0,1)$$

$$\mathbf{\mu}(t) = \mathbb{E}[z_t] = \mathbb{E}[t \cdot w] = t \cdot \mathbb{E}[w] = 0$$

$$\mathbf{k}(s,t) = \operatorname{cov}(Z_s, Z_t) = \mathbb{E}[Z_s Z_t] - \mathbb{E}[Z_s] \mathbb{E}[Z_t] = s \cdot t$$

Note that

- μ is the expectation of Z (indexed by t) rather than $t \in \mathcal{T}$
- So is Σ.
- If μ and k satisfy the above equations, for any finite subset $\{Z_{t_1}, \cdots, Z_{t_n}\}$, rank $(\Sigma) = 1$. We are happy for that. \bigcirc

Kernels

Standard Brownian motion $\mathcal{T} = [0, \infty), \mu(t) = 0, k(s, t) = \min(s, t)$

- Gaussian kernel $\mathcal{T} = \mathbb{R}^d$, $\mu(t) = 0$, $k(x, y) = \exp\{-\alpha ||x y||^2\}$
- Laplacian kernel $\mathcal{T} = \mathbb{R}^d, \mu(t) = 0, k(x, y) = \exp\{-\alpha \|x y\|\}$

Kernels

Standard Brownian motion $\mathcal{T} = [0, \infty), \mu(t) = 0, k(s, t) = \min(s, t)$

• Gaussian kernel $\mathcal{T} = \mathbb{R}^d$, $\mu(t) = 0$, $k(x, y) = \exp\{-\alpha ||x - y||^2\}$

• Laplacian kernel $\mathcal{T} = \mathbb{R}^d, \mu(t) = 0, k(x, y) = \exp\{-\alpha \|x - y\|\}$

Basis expansion for the Gaussian kernel

$$k(x_1, x_2) = \exp\left\{-x_1^2 - x_2^2 + 2x_1x_2\right\}$$
$$= \exp\left\{-x_1^2\right\} \exp\left\{-x_2^2\right\} \sum_{k=0}^{\infty} \frac{2^k x_1^k x_2^k}{k!}$$

$$\Phi: x \mapsto \left(\sqrt{\frac{2}{1}} \cdot \frac{x^0}{\exp\{-x^2\}}, \sqrt{\frac{2^2}{2!}} \cdot \frac{x^1}{\exp\{-x^2\}}, \sqrt{\frac{3^2}{3!}} \cdot \frac{x^2}{\exp\{-x^2\}}, \cdots\right)$$

Operations on Kernels

Let k, k_1, k_2 be valid kernels, and $x, y \in \mathcal{T}$. The followings are also valid kernels.

- $\alpha k(x, y)$
- $\blacktriangleright k_1(x,y) + k_2(x,y)$
- $\blacktriangleright k_1(x,y)k_2(x,y)$
- ▶ p(k(x, y)), where p is a polynomial with non-negative coefficients

- $\exp\{k(x, y)\}$
- ► $f(x)k(x,y)\overline{f(y)}$, $\forall f: \mathcal{T} \to \mathbb{R}$, or $f: \mathcal{T} \to \mathbb{C}$
- ► $k(\psi(x), \psi(y)), \forall \psi : \mathcal{T} \to \mathcal{S}$

Examples

[Source: Pattern Recognition and Machine Learning]

(日)、

э

Generating the Random Functions

To generate the previous beautiful figures, i.e., random functions defined by $\mathcal{GP}(\mu, k)$, we need to

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Generating the Random Functions

To generate the previous beautiful figures, i.e., random functions defined by $\mathcal{GP}(\mu, k)$, we need to

- Take discrete points Z_{x_1}, \cdots, Z_{x_n} in an interval
- Sample z_{x_1}, \cdots, z_{x_n} from $\mathcal{N}(\boldsymbol{\mu}, \boldsymbol{\Sigma})$
- Interpolate, which is valid intuitively as long as the kernel is "smooth."

Outline

Introduction

Kernel Tricks

Gaussian Processes for Regression

Bayesian Linear Regression

The Gaussian Process Model for Regression Problem

To predict $\{y^{(i)}\}_{i=1}^{m}$ given $\{x^{(i)}\}_{i=1}^{m}$, with $\{x^{(i)}, y^{(i)}\}_{i=m+1}^{m+n}$ known (*n* training samples, *m* test samples)

• Assume $Y^{(i)} = Z^{(i)} + \epsilon^{(i)}$, where $\epsilon^{(i)}$ is the random noise

$$\epsilon^{(i)} \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mathbf{0}, \sigma^2)$$

i.e.,

$$\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$$

- Assume {Z_x} is a GP(µ, k), where x ∈ T.
 T is the sample space, which is arbitrary. (Think of ℝ^d)
- As we always have finite samples,

$$\mathsf{Z}\sim\mathcal{N}(oldsymbol{\mu},\mathsf{K})$$

where $\boldsymbol{\mu}$ and $\boldsymbol{\mathsf{K}}$ are defined by $\mathcal{GP}(\mu, k)$, evaluated at $\boldsymbol{\mathsf{X}} = (X^{(1)}, \cdots, X^{(m)}, X^{(m+1)}, \cdots, X^{(n+m)})$

Inference

Let
$$\mathbf{Y}_{a} = \{y^{(i)}\}_{i=1}^{m}$$
 (test set), and $\mathbf{Y}_{b} = \{y^{(i)}\}_{i=m+1}^{m+n}$ (training set).

What is the distribution of $\mathbf{Y}_a | \mathbf{Y}_b = \mathbf{y}_b$?

Inference

Let
$$\mathbf{Y}_{a} = \{y^{(i)}\}_{i=1}^{m}$$
 (test set), and $\mathbf{Y}_{b} = \{y^{(i)}\}_{i=m+1}^{m+n}$ (training set).

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

What is the distribution of $\mathbf{Y}_a | \mathbf{Y}_b = \mathbf{y}_b$? Gaussian!

Inference

Let
$$\mathbf{Y}_{a} = \{y^{(i)}\}_{i=1}^{m}$$
 (test set), and $\mathbf{Y}_{b} = \{y^{(i)}\}_{i=m+1}^{m+n}$ (training set).

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

What is the distribution of $\mathbf{Y}_a | \mathbf{Y}_b = \mathbf{y}_b$? Gaussian!

▶
$$\mathbf{Y} = \mathbf{Z} + \boldsymbol{\epsilon}$$
, where $\mathbf{Z} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K})$ and $\boldsymbol{\epsilon} \sim \mathcal{N}(\mathbf{0}, \sigma^2 \mathbf{I})$
Z and $\boldsymbol{\epsilon}$ are independent

►
$$\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{K} + \sigma^2 \mathbf{I}) \stackrel{\Delta}{=} \mathcal{N}(\boldsymbol{\mu}, \mathbf{C})$$

► Denote $\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_a \\ \mathbf{Y}_b \end{pmatrix}$, then
 $\boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{pmatrix}$, and $\mathbf{C} = \begin{pmatrix} \mathbf{C}_{aa} & \mathbf{C}_{ab} \\ \mathbf{C}_{ba} & \mathbf{C}_{bb} \end{pmatrix}$

The solution is analytic!

Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{C})$, and partition it into two parts

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_a \\ \mathbf{Y}_b \end{pmatrix}, \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_a \\ \boldsymbol{\mu}_b \end{pmatrix}, \mathbf{C} = \begin{pmatrix} \mathbf{C}_{aa} & \mathbf{C}_{ab} \\ \mathbf{C}_{ba} & \mathbf{C}_{bb} \end{pmatrix}$$

What is the distribution of \mathbf{Y}_a given $\mathbf{Y}_b = \mathbf{y}_b$?

• Gaussian! $\mathcal{N}(\mathbf{m}, \mathbf{D})$

Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{C})$, and partition it into two parts

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_{a} \\ \mathbf{Y}_{b} \end{pmatrix}, \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_{a} \\ \boldsymbol{\mu}_{b} \end{pmatrix}, \mathbf{C} = \begin{pmatrix} \mathbf{C}_{aa} & \mathbf{C}_{ab} \\ \mathbf{C}_{ba} & \mathbf{C}_{bb} \end{pmatrix}$$

What is the distribution of \mathbf{Y}_a given $\mathbf{Y}_b = \mathbf{y}_b$?

- ► Gaussian! N(m, D)
- $\mathbf{b} \mathbf{m} = \boldsymbol{\mu}_{a} + \mathbf{C}_{ab}\mathbf{C}_{bb}^{-1}(\mathbf{y}_{b} \boldsymbol{\mu}_{b})$ $\mathbf{b} = \mathbf{C}_{aa} \mathbf{C}_{ab}\mathbf{C}_{bb}^{-1}\mathbf{C}_{ba}$

▲□▶ ▲圖▶ ▲国▶ ▲国▶ 目 - のへの

Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{C})$, and partition it into two parts

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_{a} \\ \mathbf{Y}_{b} \end{pmatrix}, \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_{a} \\ \boldsymbol{\mu}_{b} \end{pmatrix}, \mathbf{C} = \begin{pmatrix} \mathbf{C}_{aa} & \mathbf{C}_{ab} \\ \mathbf{C}_{ba} & \mathbf{C}_{bb} \end{pmatrix}$$

What is the distribution of \mathbf{Y}_a given $\mathbf{Y}_b = \mathbf{y}_b$?

► Gaussian! N(m, D)

$$\mathbf{b} \mathbf{m} = \boldsymbol{\mu}_{a} + \mathbf{C}_{ab}\mathbf{C}_{bb}^{-1}(\mathbf{y}_{b} - \boldsymbol{\mu}_{b})$$
$$\mathbf{b} \mathbf{D} = \mathbf{C}_{aa} - \mathbf{C}_{ab}\mathbf{C}_{bb}^{-1}\mathbf{C}_{ba}$$

For GP regression,

$$\triangleright \mathbf{C}_{aa} = \mathbf{K}_{aa} + \sigma^2 \mathbf{I}, \mathbf{C}_{ab} = \mathbf{K}_{ab}, \mathbf{C}_{ba} = \mathbf{K}_{ba}, \mathbf{C}_{bb} = \mathbf{K}_{bb} + \sigma^2 \mathbf{I}$$

More realistically, $\boldsymbol{\mu}=\mathbf{0}$, and thus

$$\mathbf{F} \mathbf{m} = \mathbf{K}_{ab} (\mathbf{K}_{bb} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}_b$$

Let $\mathbf{Y} \sim \mathcal{N}(\boldsymbol{\mu}, \mathbf{C})$, and partition it into two parts

$$\mathbf{Y} = \begin{pmatrix} \mathbf{Y}_{a} \\ \mathbf{Y}_{b} \end{pmatrix}, \boldsymbol{\mu} = \begin{pmatrix} \boldsymbol{\mu}_{a} \\ \boldsymbol{\mu}_{b} \end{pmatrix}, \mathbf{C} = \begin{pmatrix} \mathbf{C}_{aa} & \mathbf{C}_{ab} \\ \mathbf{C}_{ba} & \mathbf{C}_{bb} \end{pmatrix}$$

What is the distribution of \mathbf{Y}_a given $\mathbf{Y}_b = \mathbf{y}_b$?

► Gaussian! N(m, D)

$$\mathbf{b} \mathbf{m} = \boldsymbol{\mu}_{a} + \mathbf{C}_{ab}\mathbf{C}_{bb}^{-1}(\mathbf{y}_{b} - \boldsymbol{\mu}_{b})$$
$$\mathbf{b} \mathbf{D} = \mathbf{C}_{aa} - \mathbf{C}_{ab}\mathbf{C}_{bb}^{-1}\mathbf{C}_{ba}$$

For GP regression,

$$\triangleright \mathbf{C}_{aa} = \mathbf{K}_{aa} + \sigma^2 \mathbf{I}, \mathbf{C}_{ab} = \mathbf{K}_{ab}, \mathbf{C}_{ba} = \mathbf{K}_{ba}, \mathbf{C}_{bb} = \mathbf{K}_{bb} + \sigma^2 \mathbf{I}$$

More realistically, $\boldsymbol{\mu}=\mathbf{0}$, and thus

$$\mathbf{F} \mathbf{m} = \mathbf{K}_{ab} (\mathbf{K}_{bb} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}_b$$

 \mathbf{Y}_b dependent even given \mathbf{X}_b ?

Outline

Introduction

Kernel Tricks

Gaussian Processes for Regression

Bayesian Linear Regression

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Linear Regression

Let $\phi(x)$ be a set of basis functions. The target variable y is a linear combination of $\phi(\mathbf{x})$ with coefficients **w**, plus a Gaussian noise.

$$p(y|x, \mathbf{w}) = \mathcal{N}(y|\mathbf{w}^{T}\phi(x), \beta^{-1})$$

$$p(\mathbf{y}|\mathbf{x},\mathbf{w}) = \mathcal{N}(\mathbf{y}|\mathbf{\Phi}\mathbf{w},\beta^{-1}\mathbf{I})$$

[Modified from Pattern Recognition and Machine Learning.]

Frequentism v.s. Bayesianism

- Frequentism
 - Estimate $\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} p(\mathbf{y}|\mathbf{x}; \mathbf{w})$
 - Predict $\hat{p}(y^{(t)}|x^{(t)}) = p(y^{(t)}|x^{(t)}; \mathbf{w}^*)$
- Bayesianism
 - Have some prior $p(\mathbf{w})$ on \mathbf{w}
 - Adjust our belief with data $\mathcal{D} = \{\mathbf{x}, \mathbf{y}\}$

$$p(\mathbf{w}|\mathcal{D}) = rac{p(\mathbf{w})p(\mathcal{D}|\mathbf{w})}{p(\mathcal{D})}$$

Derive the predictive density

$$p(y^{(t)}|x^{(t)}, \mathcal{D}) = \int_{W} p(y^{(t)}|\mathbf{w})p(\mathbf{w}|\mathcal{D}) d\mathbf{w}$$

Frequentism v.s. Bayesianism

- Frequentism
 - Estimate $\mathbf{w}^* = \operatorname{argmax}_{\mathbf{w}} p(\mathbf{y} | \mathbf{x}; \mathbf{w})$
 - Predict $\hat{p}(y^{(t)}|x^{(t)}) = p(y^{(t)}|x^{(t)}; \mathbf{w}^*)$
- Bayesianism
 - Have some prior $p(\mathbf{w})$ on \mathbf{w}
 - Adjust our belief with data $\mathcal{D} = \{\mathbf{x}, \mathbf{y}\}$

$$p(\mathbf{w}|\mathcal{D}) = rac{p(\mathbf{w})p(\mathcal{D}|\mathbf{w})}{p(\mathcal{D})}$$

Derive the predictive density

$$p(y^{(t)}|x^{(t)}, \mathcal{D}) = \int_{W} p(y^{(t)}|\mathbf{w})p(\mathbf{w}|\mathcal{D}) d\mathbf{w}$$

Note that

- Mathematicians are happy ③ if prior and posterior distributions take the same form. (Called *conjugate priors*.)
- ► Most problems do not have closed-form solutions.

Bayesian Linear Regression

Likelihood function (with x omitted for clarity)

$$p(\mathbf{y}|\mathbf{w}) = \mathcal{N}(\mathbf{y}|\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I})$$

Prior

$$p(\mathbf{w}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_0, \mathbf{S}_0)$$

Posterior

$$p(\mathbf{w}|\mathbf{y}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

where

$$\mathbf{m}_{N} = \mathbf{S}_{N} (\mathbf{S}_{0}^{-1} \mathbf{m}_{0} + \beta \mathbf{\Phi}^{T} \mathbf{y})$$
$$= \beta \mathbf{S}_{N} \mathbf{\Phi}^{T} \mathbf{y}$$
$$\mathbf{S}_{N} = (\mathbf{S}_{0}^{-1} + \beta \mathbf{\Phi}^{T} \mathbf{\Phi})^{-1}$$

The subscript N denotes the number of samples seen. In practice, $\mathbf{m}_0 = \mathbf{0}$.

- 9ac

The Predictive Density

Cheat sheet

$$p(\mathbf{y}|\mathbf{w}) = \mathcal{N}(\mathbf{y}|\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I})$$
$$p(\mathbf{w}|\mathbf{y}) = \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N)$$

$$p(y^{(t)}|\mathbf{y}, \alpha, \beta) = \int p(y^{(t)}|\mathbf{w}, \beta) p(\mathbf{w}|\mathbf{y}, \alpha, \beta) \, \mathrm{d} \, \mathbf{w}$$

$$= \int \mathcal{N}(y^{(t)}|\mathbf{\Phi}\mathbf{w}, \beta^{-1}\mathbf{I}) \mathcal{N}(\mathbf{w}|\mathbf{m}_N, \mathbf{S}_N) \, \mathrm{d} \, \mathbf{w}$$

$$\propto \exp\{\cdot\} \exp\{\cdot\} \, \mathrm{d} \, \mathbf{w}$$

$$\propto \int \mathcal{N}(\mathbf{w}|\cdot)g(y) \, \mathrm{d} \, \mathbf{w}$$

$$= g(y) \int \mathcal{N}(\mathbf{w}|\cdot) \, \mathrm{d} \, \mathbf{w}$$

$$\propto \mathcal{N}(y|\cdot)$$

Predictive Density

$$p(y^{(t)}|\mathbf{y}) = \mathcal{N}(y^{(t)}|\mathbf{m}_N^T \phi(x), \sigma_N^2(x))$$

where

$$\sigma_N^2(x) = \frac{1}{\beta} + \boldsymbol{\Phi}(\mathbf{x})^T \mathbf{S}_N \boldsymbol{\Phi}(x)$$

<□ > < @ > < E > < E > E のQ @

An Example of Predictive Density with RBF Bases

[Source: Pattern Recognition and Machine Learning]

Function samples $y(x, \mathbf{w})$ Dawn from the Posterior over \mathbf{w}

[Source: Pattern Recognition and Machine Learning] = , 📱 🤛

The Equivalent Kernel

The predicted density has mean

$$\mathbb{E}[y(x)] = \mathbb{E}[\phi(x)^T \mathbf{w}]$$

= $\phi(x)^T \mathbf{m}_N$
= $\beta \phi(x)^T \mathbf{S}_N \Phi^T \mathbf{y}$
= $\sum_{n=1}^N \beta \phi(x)^T \mathbf{S}_N \phi(x_n) y_n$
 $\triangleq \sum_{n=1}^N k(x, x_n) y_n$

where $k(x, x') = \beta \phi(x)^T \mathbf{S}_N \phi(x')$, depending on the input **X**

$$\operatorname{cov}(y(x), y(x')) = \operatorname{cov}\left(\phi(x)^{T} \mathbf{w}, \mathbf{w}^{T} \phi(x')\right)$$
$$= \phi(x)^{T} \mathbf{S}_{N} \phi(x')$$
$$= \beta^{-1} k(x, x')$$

Gaussian Process and Bayesian Linear Regression

 In a Gaussian process regression, the predictive density has mean

$$m = \mathbf{K}_{ab} (\mathbf{K}_{bb} + \sigma^2 \mathbf{I})^{-1} \mathbf{y}_b$$

In Bayesian linear regression,

$$m = \phi(x)^T \left(rac{lpha}{eta} \mathbf{I} + \mathbf{\Phi}^T \mathbf{\Phi}
ight)^{-1} \mathbf{\Phi}^T \mathbf{y}$$

My notes

- Both Gaussian process regression and Bayesian linear regression stem from a prospective of Bayesianism, taking similar forms.
- Provided a training set, Bayesian linear regression can be fully represented by an equivalent kernel, which inspires the Gaussian process regression.
- However, the two models seems to be NOT equivalent in general.

References

- Pattern Recognition and Machine Learning
- Machine Learning: A Probabilistic Prospective
- http://www.gaussianprocess.org/
- https://www.youtube.com/user/mathematicalmonk

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ