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Warming up

I Let Zt be a Gaussian distribution with mean µt and standard
deviation σt (t ∈ T ).

p(zt) =
1√

2πσ2
t

exp

{
−(x − µt)2

2σ2
t

}
I If Z independent, what is the joint distribution of Zi1 , · · · ,Zin?

(Zi1 , · · · ,Zin)T ∼ N (µ,Σ)

where µ = (µi1 , · · · , µin)T ,Σ = diag{σi1 , · · · , σin}

p(z) =
1√

(2π)n|Σ|
exp

{
−1

2
(z− µ)TΣ−1(z− µ)

}
I If Z dependent, what it the joint distribution? Recall copulas.
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Stochastic Processes

Definition. A stochastic process is a set of random variables {Zt},
t ∈ T . T is called an index set.

I Trivial process: Zt independent

I Brownian process

I Poisson process

The relationships between Zt are a distinguishing feature in the field
of stochastic processes.



Gaussian Processes

Definition. A Gaussian process {Zt}, (t ∈ T ) is a stochastic
process, each subset of {Zt} forming a (multivariate) Gaussian.

A minor question: Why not model {Zt} directly as a multivariate
Gaussian?

I T may have infinite elements (or even uncountable).

I What computers can deal with is finite Gaussian processes,
degraded to multivariate Gaussian distributions.
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An Example

Random lines: T = R. ∀t ∈ T , let Zt = t · w , where w ∈ R and
w ∼ N (w |0, 1) zt1

...
ztn

 =

 t1w
...

tnw

 =

 t1
...
tn

w ∼ N

This GP defines a linear function on R.



A Big Picture

Consider a regression problem. Let a GP {Zt} define a random
function (not necessarily linear), where t comes from an arbitrary
index set T of the input space.

[Source: NIPS-06’s talk]

A prospective of Bayesianism
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Existence of Gaussian Processes

Theorem. For any index set T , any mean function µ : T → R
and any covariance function k : T × T → R, there exists a
Gaussian process {Zt} on T such that E[Zt ] = µ(t) and
cov(Zs ,Zt) = k(s, t), ∀s, t ∈ T .

⇒ A Gaussian process is fully characterized by µ and k.

I k is also called a kernel function.

I When evaluated on a finite subset, k defines a kernel matrix K .

I Mercer’s Theorem: If K is symmetric and positive semi-definite,
then K can be represented as an inner-product in some Hilbert
space.



Random Line Revisit

T = R. ∀t ∈ T , Zt = t · w , where w ∼ N (w |0, 1)

I µ(t) = E[zt ] = E[t · w ] = t · E[w ] = 0

I k(s, t) = cov(Zs ,Zt) = E[ZsZt ]− E[Zs ]E[Zt ] = s · t

Note that

I µ is the expectation of Z (indexed by t) rather than t ∈ T
I So is Σ.

I If µ and k satisfy the above equations, for any finite subset
{Zt1 , · · · ,Ztn}, rank(Σ) = 1. We are happy for that. ,



Kernels

I Standard Brownian motion
T = [0,∞), µ(t) = 0, k(s, t) = min(s, t)

I Gaussian kernel T = Rd , µ(t) = 0, k(x , y) = exp{−α‖x − y‖2}
I Laplacian kernel T = Rd , µ(t) = 0, k(x , y) = exp{−α‖x − y‖}

Basis expansion for the Gaussian kernel

k(x1, x2) = exp
{
−x2

1 − x2
2 + 2x1x2

}
= exp

{
−x2

1

}
exp

{
−x2

2

} ∞∑
k=0

2kxk1 x
k
2

k!

Φ : x 7→

(√
2

1
· x0

exp{−x2}
,

√
22

2!
· x1

exp{−x2}
,

√
32

3!
· x2

exp{−x2}
, · · ·

)
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Operations on Kernels

Let k , k1, k2 be valid kernels, and x , y ∈ T . The followings are also
valid kernels.

I αk(x , y)

I k1(x , y) + k2(x , y)

I k1(x , y)k2(x , y)

I p(k(x , y)), where p is a polynomial with non-negative
coefficients

I exp{k(x , y)}
I f (x)k(x , y)f (y), ∀f : T → R, or f : T → C
I k(ψ(x), ψ(y)), ∀ψ : T → S



Examples

[Source: Pattern Recognition and Machine Learning ]



Generating the Random Functions

To generate the previous beautiful figures, i.e., random functions
defined by GP(µ, k), we need to

I Take discrete points Zx1 , · · · ,Zxn in an interval

I Sample zx1 , · · · , zxn from N (µ,Σ)

I Interpolate, which is valid intuitively as long as the kernel is
“smooth.”
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The Gaussian Process Model for Regression Problem

To predict
{
y (i)
}m
i=1

given
{
x (i)
}m
i=1

, with
{
x (i), y (i)

}m+n

i=m+1
known

(n training samples, m test samples)

I Assume Y (i) = Z (i) + ε(i), where ε(i) is the random noise

ε(i) i.i.d.∼ N (0, σ2)

i.e.,
ε ∼ N (0, σ2I)

I Assume {Zx} is a GP(µ, k), where x ∈ T .
T is the sample space, which is arbitrary. (Think of Rd)

I As we always have finite samples,

Z ∼ N (µ,K)

where µ and K are defined by GP(µ, k), evaluated at
X = (X (1), · · · ,X (m),X (m+1), · · · ,X (n+m))



Inference

Let Ya =
{
y (i)
}m
i=1

(test set), and Yb =
{
y (i)
}m+n

i=m+1
(training set).

What is the distribution of Ya|Yb = yb?

Gaussian!

I Y = Z + ε, where Z ∼ N (µ,K) and ε ∼ N (0, σ2I)
Z and ε are independent

I Y ∼ N (µ,K + σ2I)
∆
= N (µ,C)

I Denote Y =

(
Ya

Yb

)
, then

µ =

(
µa

µb

)
, and C =

(
Caa Cab

Cba Cbb

)
I The solution is analytic!
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Conditional Gaussian Distributions

Let Y ∼ N (µ,C), and partition it into two parts

Y =

(
Ya

Yb

)
,µ =

(
µa

µb

)
,C =

(
Caa Cab

Cba Cbb

)

What is the distribution of Ya given Yb = yb?

I Gaussian! N (m,D)

I m = µa + CabC−1
bb (yb − µb)

I D = Caa − CabC−1
bb Cba

For GP regression,

I Caa =Kaa + σ2I,Cab =Kab,Cba =Kba,Cbb =Kbb + σ2I

More realistically, µ = 0, and thus

I m = Kab(Kbb + σ2I)−1yb
Yb dependent even given Xb?
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Linear Regression
Let φ(x) be a set of basis functions. The target variable y is a linear
combination of φ(x) with coefficients w, plus a Gaussian noise.

p(y |x ,w) = N (y |wTφ(x), β−1)

p(y|x,w) = N (y|Φw, β−1I)

[Modified from Pattern Recognition and Machine Learning.]



Frequentism v.s. Bayesianism

I Frequentism

- Estimate w∗ = argmaxw p(y|x; w)
- Predict p̂(y (t)|x (t)) = p(y (t)|x (t); w∗)

I Bayesianism
I Have some prior p(w) on w
I Adjust our belief with data D = {x, y}

p(w|D) =
p(w)p(D|w)

p(D)

I Derive the predictive density

p(y (t)|x (t),D) =

∫
W

p(y (t)|w)p(w|D) d w

Note that

I Mathematicians are happy , if prior and posterior distributions
take the same form. (Called conjugate priors.)

I Most problems do not have closed-form solutions.
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Bayesian Linear Regression

I Likelihood function (with x omitted for clarity)

p(y|w) = N (y|Φw, β−1I)

I Prior
p(w) = N (w|m0,S0)

I Posterior
p(w|y) = N (w|mN ,SN)

where

mN = SN(S−1
0 m0 + βΦTy)

= βSNΦTy

SN = (S−1
0 + βΦTΦ)−1

The subscript N denotes the number of samples seen.
In practice, m0 = 0.
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The Predictive Density

Cheat sheet
p(y|w) = N (y|Φw, β−1I)

p(w|y) = N (w|mN ,SN)

p(y (t)|y, α, β) =

∫
p(y (t)|w, β)p(w|y, α, β) d w

=

∫
N (y (t)|Φw, β−1I)N (w|mN ,SN) d w

∝ exp{·} exp{·} d w

∝
∫
N (w|·)g(y) d w

= g(y)

∫
N (w|·) d w

∝ N (y |·)



Predictive Density

p(y (t)|y) = N (y (t)|mT
Nφ(x), σ2

N(x))

where

σ2
N(x) =

1

β
+ Φ(x)TSNΦ(x)



An Example of Predictive Density with RBF Bases

[Source: Pattern Recognition and Machine Learning ]



Function samples y(x ,w) Dawn from the Posterior over w

[Source: Pattern Recognition and Machine Learning ]



The Equivalent Kernel
The predicted density has mean

E[y(x)] = E[φ(x)Tw]

= φ(x)TmN

= βφ(x)TSNΦTy

=
N∑

n=1

βφ(x)TSNφ(xn)yn

∆
=

N∑
n=1

k(x , xn)yn

where k(x , x ′) = βφ(x)TSNφ(x ′), depending on the input X

cov
(
y(x), y(x ′)

)
= cov

(
φ(x)Tw,wTφ(x ′)

)
= φ(x)TSNφ(x ′)

= β−1k(x , x ′)



Gaussian Process and Bayesian Linear Regression

I In a Gaussian process regression, the predictive density has
mean

m = Kab(Kbb + σ2I)−1yb

I In Bayesian linear regression,

m = φ(x)T
(
α

β
I + ΦTΦ

)−1

ΦTy

My notes

I Both Gaussian process regression and Bayesian linear regression
stem from a prospective of Bayesianism, taking similar forms.

I Provided a training set, Bayesian linear regression can be fully
represented by an equivalent kernel, which inspires the
Gaussian process regression.

I However, the two models seems to be NOT equivalent in
general.

Disclaimer: If I were wrong, please feel free to tell me.
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