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Gibbs sampling for inference, and maximum likelihood estimation.
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1 Introduction

Joint probability and dependencies

Consider a set of random variables X = (X1, · · · , Xn)T . We assume the variables take finite

discrete values. People will be happy if the joint probability table is known, e.g. God told you

one night. See Table 1. The joint probability distribution is complete when modeling such random

variables. However, two facts prevent it from being a real-world practice.

1. The number of parameters grows exponentially with respect to n, as long as there is no closed

form representation of the joint probability. Let us say that there are n random variables, and

each variable takes |V | values. The table has |V |n entries, and |V |n−1 free parameters in general.

(Note that
∑

x P (x) = 1.)

2. It is infeasible to estimate the parameters, as the number is exponential. Say we have 50 variables,

maximum likelihood estimation (just counting the fraction in this scenario) would give most

entries equal to 0, provided any reasonable sized training data samples.

Life will be easier if we have independencies. In the extreme case, where all variables are

independent, we have

P (X1, · · · , Xn) = P (X1) · · · · · P (Xn) (1)

The number of parameters grows linearly with respect to n. However, such model cannot represent

most real-world data as the independence assumption is usually not true (and also not interesting).

Table 1: Joint probability table on X1, · · · , Xn

X1 X2 · · · P (X1, X2, · · · )
0 0 · · · ·
1 0 · · · ·
0 1 · · · ·
1 1 · · · ·

· · · · · ·
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Bayesian Networks

Bayesian networks decomposite the joint distribution in a “cause-and-effect” fashion. For

example, let us consider two variables

• R: Whether it rains

• W : Whether the road is wet

We know from physical rules that R is the cause of W . First, it rains or not as God likes with

probability P (r1).1 Second, if it rains, the road is wet with probability P (w1|r1); if it does not rain,

the road is wet with probability P (w1|r0). Then, the joint distribution is

P (W,R) = P (R)P (W |R)

In general, for variables X1, · · · , Xn, with each variable Xi having its causes Par(Xi), the joint

probability is

P (X) =
n∏
i=1

P (Xi|Par(Xi)) (2)

Constructing the Bayesian network from the above conditional probability is easy. Each variable

corresponds to a node in the graph. What we need to do then is to add a directed edge X → Y if X

is the cause of Y . The Bayesian network for R,W is

(R)−→(W )

Note that

1. ∅ ⊆ Par(Xi) ⊆X\{Xi}, and at least one variable has no causes.

2. Two variables cannot be the causes for each other, considering the transitivity of the “cause-and-

effect” relation. Formally speaking, the Bayesian network is a directed acyclic graph.

Many philosophy discussion can be added here, especially on what is cause and what is effect

from a Bayesian network prospective. However, they are well beyond the scope of this note as we are

talking about Markov networks.

Markov Networks

Even though Bayesian network is complete for modeling random variables, it is not successful in

all applications. For example, in an image, two neighboring pixels are certainly correlated, but we

can say little which pixel is the “cause” of the other. When modeling with a Bayesian network, the

“causes” of a pixel will grow exponentially, and thus, little is gained from such decomposition in terms

of computational cost.

Markov networks are yet another probability decomposition approach. As an undirected

graph, a node X is connected to node Y if they are somewhat related regardless of other variables.

Formal definitions of Markov networks will be given in the next section.

In short, both Bayesian networks and Markov networks model the joint probability among random

variables by decomposition. The goal is to simplify the joint probability distribution, as well as

preserve interesting dependencies.

1x1 is a short notation for X = 1.
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2 Markov Networks

A Toy Example

Take Daphne Koller’s interesting example, where we have 4 random variables A,B,C,D, corre-

sponding to whether Alice, Bob, Charles, Debbie have a correct understanding of some materials, say

Bayesian networks. Alice and Bob study together often, as they may influence each other. So as Bob,

Charles; Charles, Debbie; and Debbie, Alice.

How they effect each other is modeled by a set of factor tables (Table 2). As we see, Alice and

Bob are good friends, they are extremely prone to have the same understanding (either correct or

incorrect); Bob, Charles and Debbie, Alice also tend to have the same understanding, but they are

not as strong as Alice and Bob; Charles and Debbie usually argue, and they are more likely to hold

different opinions.

The factor here has many other terminologies, including potential, affinity, compatibility, soft

constraint, etc. To best understand this concept, we quote Daphne Koller’s explanation as “local

happiness for a certain assignment.” The word “local” emphasizes on one important fact that,

the distribution of one variable not only depends on local factors, but also on many other variables,

concretely, any variable appears in one factor, and those by transitivity of “relatedness. The exact

meaning of factors is defined in the following part.

Formal definition

“Meaning is use,” said Wittgenstein. The meaning of factors is defined exactly through how it is

related to the joint probability.

Let φi(Di), i = 1..k be a set of factors defined on random variables X1, · · · , Xn. Di ⊆ Xi is the

scope of factor φi. The only constraint on factors is that the entries in the factors are non-negative.

To be more friendly, they are often strictly positive. We define

• Unnormalized measure

P̃ (X) =
k∏
i=1

φi(Di) (3)

• Partition function

Z =
∑
x

P̃ (x) =
∑
x

k∏
i=1

φi(Di) (4)

• Probability

P (X) =
1

Z
P̃ (X) =

k∏
i=1

φi(Di)∑
x

k∏
i=1

φi(Di)

(5)

Do not be scared by the formula menagerie. In fact, the meaning of factors are pretty much the

same as in Bayesian network—the probability is closely related to the product of all factors, analogous

Table 2: Factor tables for (A,B), (B,C), (C,D) and (D,A)

A B φ(A,B)

0 0 1000

0 1 1

1 0 1

1 1 1000

B C φ(B,C)

0 0 100

0 1 1

1 0 1

1 1 100

C D φ(C,D)

0 0 1

0 1 10

1 0 10

1 1 1

D A φ(D,A)

0 0 100

0 1 1

1 0 1

1 1 100
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to the product of conditional probability. The only difference lies in that the products do not sum to

1 over x’s. Thus, P̃ is called unnormalized measure in Equation 3. Then, to obtain a normalized

probability, we divide P̃ by the sum over all possible x’s (Equation 4 and 5). This model is often

referred to as a Markov Random Field (MRF).

Beginners usually concern on how to obtain the parameters (φ’s) in MRFs. It is typically not

feasible for human experts to specify because people do not have a clear intuition about factors

(except the fact that they are local happiness for a certain assignment). In practice, they are learned

by maximum likelihood estimation, introduced in Section 4, or its variations.

Inducing a Markov Network

The Markov network, induced from the Markov random field, is defined as follows.

• Each node corresponds to a random variable.

• Xi is connected to Xj with an undirected edge if and only if there exits a factor, whose scope

contains both Xi and Xj, i.e., ∃Dk, s.t. Xi, Xj ∈ Dk

It should also be noticed that, given a set of factors, the Markov network is unique; given a Markov

network, we cannot read factorization from the network.

Toy Example Revisit

We are now equipped to compute the joint distribution in the toy example. Suppose we would like

to know P (a0, b1, c0, d0), we first compute

P̃ (a0, b1, c0, d0) = φA,B(a0, b1)φBC(b1, c0)φCD(c0, d0)φDA(d0, a0)

= 1× 1× 1× 100

= 100

Then we compute Z =
∑

x P̃ (x), which is a little bit difficult because we should sum over 44 = 256

terms. Finally, the probability is obtained by P (a0, b1, c0, d0) =
1

Z
P̃ (a0, b1, c0, d0)

As D1 = {A,B}, D2 = {B,C}, D3 = {C,D}, D4 = {D,A}, the induced Markov network is

A — B

| |
D — C

Notes on maximal cliques

In some text books, factors are defined on maximal cliques in an undirected graph. However, it is

not essentially the case, and is somewhat misleading in that

1. We usually specify a set of factors and induce the Markov networks to help us understand the

dependencies, but not vice versa.

2. Factors are not necessarily defined on maximal cliques. Even though any factor can be absorbed

into maximal clique factors—that is, we can always replace a factor with a maximal clique factor,

whose scope is a superset of the current one—the parametrization is not equivalent, especially

during the learning process. In fact, it is a common practice to assign unigram factors along

with other factors in sequential labeling in natural language processing.
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Conditional Random Fields

Conditional Random Fields (CRFs) are essentially the same as MRFs except that we hold different

point of views—we model the conditional probability instead of the joint probability.

Oftentimes, the set of random variables that we need to model can be split into two groups X and

Y . X is always given, so that we have special interest in Y . (This is a major difference between

supervised learning and unsupervised learning. Recall linear regression and principle component

analysis.)

As X is always given, we may not model P (X), and hence P (X,Y ), which is sometimes

uneconomic and infeasible. For example, in an image classification problem, the task is to tag a label

(Y ) to a given image (X). That is, what we need to know is P (Y |X) rather than P (X, Y ). We

call this a discriminative model if we do not model P (X,Y ), in contrast to generative models

modeling P (X,Y ).

In the MRF setting, the conditional probability

P (Y |X) =
P (Y ,X)

P (X)
=
P̃ (Y ,X)

P̃ (X)
=

P̃ (Y ,X)∑
y P̃ (X,y)

Based on the above equation, we define unnormalized measure, partition function and probability

for CRFs as follows.

• Unnormalized measure

P̃ (X,Y ) =
k∏
i=1

φi(Di) (6)

• Partition function

Z(X) =
∑
y

P̃ (X,y) =
∑
y

k∏
i=1

φi(Di) (7)

• Conditional probability

P (Y |X) =
1

Z(X)
P̃ (X,Y ) =

k∏
i=1

φi(Di)∑
y

k∏
i=1

φi(Di)

(8)

3 Gibbs Sampling

Sampling methods

A key problem in Markov network it to query the joint distribution, P (x). As we have attempted to

compute, but not completed in the previous section, we can always sum over all possible assignments

x. However, the computational cost is usually very high. Dynamic programming techniques can be

applied, e.g. the clique tree calibration algorithm. In these cases, the complexity grows exponentially

with respect to the tree width. Therefore, a densely connected graph is also not tractable for exact

inference.

Sampling methods are a natural solution if we have a simulation system. For example, if we would

like to know P (Head) of a coin, one approach is to go through all the physical and mathematical

details, which does not seem to be a good idea. An alternative is to toss the coin for multiple times,

which will give a fairly good estimation of P (Head).
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Similarly, if we are able to get an unbiased sample of X in Markov networks, estimating P (x)

becomes just a matter of counting the fraction
Occurrences of x

All samples
.

In the rest of this section, we will first introduce the Gibbs sampling algorithm, which is not

difficult to understand. Then, we introduce Markov chain and a significant theorem. Finally, we

prove that Gibbs sampling gives unbiased samples.

Gibbs Sampling Algorithm

The Gibbs sampling algorithm is simple, which continuously samples a variable Xi, (i = 1 · · ·n)

from its posterior distribution with all other variables temporally fixed. After a long while, the

samples are guaranteed to be unbiased. Formally, the algorithm is presented in Algorithm 1.

The input is an initialization of variables X(0), and the posterior distribution of Xi given all

other variables, X\{Xi}, denoted as X−i. The initialization does not matter much in Gibbs

sampling algorithm. Then, we continuously sample X(t) by iterating over each variable Xi and

sampling it from its posterior Xi ∼ P (Xi|X−i). To illustrate this process, we consider three variables

X = (X1, X2, X3)T , each taking binary values {0, 1}. One run of Gibbs sampling is shown in Table 3.

Note that the posterior distributions in the table and the outcomes of the random trials are as I like.

Computing posterior distributions in Markov networks

As the posterior distribution is the key of Gibbs sampling, it should be required that computing

posteriors is tractable in Markov networks. Otherwise, we do not gain anything from Gibbs sampling,

regardless of the long while before samples become unbiased.

In fact, the posterior distribution Xi ∼ P (Xi|X−i) is only related to factors whose scopes contain

Xi, which means the computation is “local,” and hence oftentimes tractable. Noting

PΦ(Xi|X−i) =
P (Xi,X−i)

P (X−i)
=

1
Z
P̃ (Xi,X−i)
1
Z
P̃ (X−i)

=

∏
φ∈Φ

φ∑
xi

∏
φ∈Φ

φ

we pull out factors that do not contain xi in the denominator, canceling out exactly those in the

numerator. Therefore, we only need to multiply the factors that involve Xi, i.e.,

PΦ(Xi|X−i) ∝
∏

j:Xi∈Dj

φj(Xi,XDj−Xi
) (9)

Markov chains

We are now able to implement Gibbs sampling efficiently for Markov networks. But we still need

to verify that the samples are unbiased. To accomplish this goal, we now introduce Markov chains

as a fundamental.

Algorithm 1: Gibbs Sampling

Input: Any initialization of X(0) = (X
(0)
1 , · · · , X(0)

n )T ,

Posterior distributions Pi(Xi|X−i), i = 1..n

Output: Samples {X(t)}∞t=1, unbiased if t→∞

while t = 1..∞ do

for i = 1..n do
Xi ∼ P (Xi|X−i)

end

Obtain X(t)

end
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Table 3: One run of Gibbs sampling.

Underlined variables are the one to be sampled in this iteration.

Samples Variables Sampling preocess

X(0) 0, 1, 0 Random initialization

1 , 1, 0 X1 ∼ P (X1|X2X3)

1, 1, 0 X2 ∼ P (X2|X1X3)

X(1) 1, 1, 0 X3 ∼ P (X3|X1X2)

0, 1, 0 X1 ∼ P (X1|X2X3)

0, 0, 0 X2 ∼ P (X2|X1X3)

X(2) 0, 0, 1 X3 ∼ P (X3|X1X2)

·
·
·

A Markov chain has two components

• States s1, · · · , sn

• Transition probability T (si → sj) = P (s(t+1) = sj|s(t) = si),∀t.

The system has discrete time clocks. As each time t, the system is in one (and only one) state.

When the clock ticks, the system goes to a certain state with the transition probability. The Markov

assumption assumes

1. The next state is only related to the current state, i.e., the transition probability is only

conditioned on s(t), represented as T .

2. For different time steps, the transition probability is exactly the same.

A famous example is the Markov chain of weather. Assume the weather can be {Sunny, Cloudy,

Rainy}. Tomorrow’s weather is related to and only to today’s weather with some transition probability.

If the system’s state at time t is unknown, we can model it with a probabilistic distribution

P (s(t) = si). Then, the probability of the next time step t+ 1 is given by

P (s(t+1) = sj) =
n∑
i=1

p(s(t) = i)T (sj → si) (10)

More compactly, let p(t) ∈ Rn be the distribution over states s1, · · · , sn, and let T ∈ Rn×n be the

transition matrix, with Ti,j = T (si → sj).
2 We can rewrite the transition function as

p(t+1) = T Tp(t) (11)

Oftentimes, the Markov chain will reach a stationary distribution π after a long time, where the

distribution does not change during transition. In such cases, the stationary distribution π satisfies

π = T Tπ (12)

That is to say, π is the eigenvector of T T , corresponding to eigenvalue 1.

Theorem
2The transition matrix’s row and column may be different from text book conventions. I am not sure about that.
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A Markov chain as a unique stationary distribution π

⇑

The Markov chain is regular, i.e., ∃k,∀x, x′, P (x→ x′with exactly k steps) > 0

⇑

∀i, j, Ti,j > 0

�

The proof of this theorem is beyond the scope of this note. But here are some intuitive thoughts

on the theorem.

• Google’s PageRank algorithm takes advantage of Markov chains. No matter what web page you

are visiting now, you will reach a unique distribution over web pages if you surf long enough on

the Internet (provided that any two web pages are linked, usually accomplished by assigning a

random jump with some low probability).

• Note that the transition is linear, which guarantees no chaos. Besides, each row in the transition

matrix T sums to 1, which guarantees the system is conservative.

Gibbs sampling revisit

We now prove that Gibbs sampling will give unbiased samples by making use of Markov chains.

Proof Design a Markov chain as follows.

• Let the states be all possible assignments x

• Let the transition matrix T =
∏n

i=1 Ti, where

Ti ((x−i, x′i)→ (x−i, xi)) = P (xi|x−i), ∀x′i (13)

The transition process is as follows. We iterate over all variables xi. For each variable, we

sample xi from its posterior, regardless of current value x′i. Note that x−i does not change

when sampling xi. As Ti is the transition probability when sampling xi, the overall transition

probability T is
∏n

i=1 Ti.3

We have now designed a Markov chain, which conforms to Gibbs sampling process. What we are

going to do is to prove the Markov chain has the unique stationary distribution P (x). First, it is

obvious that the Markov chain is regular. We now verify that

P (x) =
∑
x′

Ti(x′i → xi)P (x′) (14)

3x−i means {x1, · · · , xn}\{xi}
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LHS = P (x)

RHS =
∑
x′i

Ti((x−i, x′i)→ (x−i, xi))P (x′) (15)

=
∑
x′i

P (xi|x−i)P (x′) (16)

=
∑
x′i

P (xi|x−i)P (x−i, x
′
i) (17)

= P (x−i)P (xi|x−i) (18)

= P (xi,x−i) (19)

= P (x) (20)

Equation 15 holds by noticing that x−i must remain the same. Equation 16 holds by the design of

Markov chain transition probability (Equation 13). Equation 17 holds by rewriting x′ = (x′i,x−i).

Equation 18 holds by pulling P (xi|x−i) out of summation since x′i do not appear in it. Then we

marginalize out x′i. Equation 19 holds by chain rule. Finally, we rewrite (xi,x−1) = x.

�

4 Maximum Likelihood Estimation

Philosophy

Statistics is more about philosophy than mathematics. God knows the parameters, but we

humans do not. Parameter estimation depends largely on people’s philosophy or belief. Maximum

likelihood estimation (MLE) assumes that more probable events happen first; less probable events

happen later. Given a dataset, MLE would like the probability of the dataset to be maximum with

respect to parameters. The general objective is

maximize
Θ

L (Θ,D) (21)

where L (Θ,D) = P (D ; Θ). For convenience, we usually maximize the log likelihood `(Θ,D) =

log L (Θ,D), which is exactly equivalent to maximizing likelihood.

Please verify yourself that Markov networks have no closed form solution for MLE. Fortunately,

the objective (Equation 21) is concave for Markov networks. That is to say, we can reach global

maximum by gradient ascent methods.

In the following part, we first re-parametrize MRF as a log-linear model. Then we derive the

gradient for solving MLE.

Reparametrization

Let fi(x), i = 1..k, be a set of features defined on x. The unnormalized measure of the log-linear

model is defined as

P̃ (x) = exp

{
k∑
i=1

θifi(x)

}
(22)

The partition function and probability is defined exactly as before.

Any MRF can be re-parametrized by a log-linear model. For factor φ whose scope is Xi, X2, · · · , Xd,

we define a bunch of features

fx1,x2,··· ,xn(X1, X2, · · · , Xd) =

{
1, if X1 = x1, X2 = x2, · · · , Xd = xd
0, otherwise

(23)
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Note that, if Xi takes |Vi| values, the total number of features corresponding to the factor is
∏d

i=1 |Vi|.
As exponentiation transforms multiplications (in MRF) to summations (in the exponent in log-linear

model), φ and θ have the following relationship.

φX1,··· ,Xd
(x′1, · · · , x′d) = exp

 ∑
x′1··· ,x′d

θx′1, · · · , x′dfx′1,··· ,x′d(x1, · · · , xd)

 (24)

[Re-define φ]

= exp {θx1,··· ,xd} (25)

[whenever x′i 6= xi, fx′ = 0; otherwise fx′ = 1]

MLE for log-linear models

1

M
`(Θ,D) =

1

M
logP (D ; Θ)) [Definition of log-likelihood]

=
1

M
log

M∏
j=1

P (X(j); Θ) [Data samples x(j) iid]

=
1

M

M∑
j=1

logP (x(j); Θ) [Pull the production out of logarithm]

=
1

M

M∑
j=1

log
exp

{∑k
i=1 θifi(x

(j))
}

∑
x′ exp

{∑k
i=1 θifi(x

′)
} [Definition of P (x) in log-linear models]

=
1

M

M∑
j=1

log exp

{
k∑
i=1

θifi(x
(j))

}
− 1

M

M∑
j=1

log
∑
x′

exp

{
k∑
i=1

θifi(x
′)

}
[Split the logarithm]

=
1

M

M∑
j=1

k∑
i=1

θifi(x
(j))− 1

M

M∑
j=1

log
∑
x′

exp

{
k∑
i=1

θifi(x
′)

}
[log and exp cancel out]

We compute the partial derivatives for each term separately.

∂

∂θl

1

M

m∑
j=1

k∑
i=1

θifi(x
(j)) =

1

M

m∑
j=1

fl(x
(j))

[Only those terms that contain θl have contribution

to the partial derivative with respect to θl]

= Ex∼D [fi(x)] (26)

[The partial derivative of the first term

is the expectation of fi(x) in data]
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∂

∂θl

1

M

M∑
j=1

log
∑
x′

exp

{
k∑
i=1

θifi(x
′)

}
=

∂

∂θl
log

∑
x′

exp

{
k∑
i=1

θifi(x
′)

}

[
1

M
cancels the summation]

=
1∑

x′ exp
{∑k

i=1 θifi(x
′)
} ×∑

x′

{
exp

{
k∑
i=1

θifi(x
′)

}
× fl(x′)

}

[Chain rule]

=
∑
x′

exp
{∑k

i=1 θifi(x
′)
}

∑
x′′ exp

{∑k
i=1 θifi(x

′′)
}fl(x′)

[Pull the denominator into the summation.

We can always do that, and we change the name a little bit.]

=
∑
x′

P (x′)fl(x
′)

[The fraction is exactly the definition of P (x′)]

= Ex∼Θ[fl(x)] (27)

[The expectation of fi in model.]

Combining Equations 26 and 27, we obtain the beautiful equation

∂

∂θl

1

M
`(Θ,D) = Ex∼D [fi(x)]− Ex∼Θ[fl(x)] (28)
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