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Introduction

Recall some toy tasks of Question Answering 1:

1Weston, J., Bordes, A., Chopra, S., and Mikolov, T. Towards AI-complete question answering: A set of prerequisite toy tasks. arXiv
preprint: 1502.05698, 2015 (http://fb.ai/babi)

http://fb.ai/babi
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Introduction (cont.)

Simulated World QA:

• 4 characters, 3 objects and 5 rooms

• characters: moving around, picking up and dropping objects

→ A story, a related question and an answer

To answer the question:

• Understanding the question and the story

• Finding the supporting facts for the question

• Generating an answer based on supporting facts
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Introduction (cont.)

Classical QA methods:

• Retrieval based methods:
Finding answers from a set of documents

• Triple-KB based methods:
Mapping questions to logical queries
Querying the knowledge base to find answer related triples

Neural network and embedding approaches:

1. Representing questions and answers as embeddings via neural sentence
models

2. Learning matching models and embeddings by question-answer pairs

How about reasoning?

Memory Networks: Reason with inference components combined with a
long-term memory component
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Memory Networks: General Framework

Components: (m, I, G,O,R)
- A memory m: an array of objects indexed by mi

- Four (potentially learned) components I, G, O and R:

• I – input feature map: converts the incoming input to the internal
feature representation.

• G – generalization: updates old memories given the new input.

• O – output feature map: produces a new output2, given the new
input and the current memory state.

• R – response: converts the output into the response format desired.

Given an input x, the flow of the model3:

1. Convert x to an internal feature representation I(x).

2. Update memories mi given the new input: mi = G(mi, I(x),m), ∀i.
3. Compute output features o given the new input and the memory: o = O(I(x),m).

4. Finally, decode output features o to give the final response: r = R(o).

2the output in the feature representation space

3Input: e.g., an character, word or sentence, or image or an audio signal
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Memory Networks: General Framework (cont.)

Memory networks cover a wide class of possible implementations.
The components I, G, O and R can potentially use any existing ideas from the
machine learning literature.

• I: standard pre-processing or encoding the input into an internal feature repre-
sentation

• G: updating memories

• Simplest form: to store I(x) in a slot in the memory mH(x) = I(x)
• More sophisticated form: go back and update earlier stored memories based

on the new evidence from the current input4

• Memory is huge (e.g. Freebase): slot choosing functions H
• Memory is full/overflowed: implementing a ”forgetting” procedure via H to

replace memory slots

• O: reading from memory and preforming inference (e.g., calculating what are the
relevant memories to perform a good response)

• R: producing the final response given O (e.g., embeddings → actual words)

One particular instantiation of a memory network:
- Memory neural networks (MemNNs): the components are neural networks

4similar to LSTM



Outline Introduction MemNN MemNN-WSH Appendix

Memory Networks: General Framework (cont.)

Memory networks cover a wide class of possible implementations.
The components I, G, O and R can potentially use any existing ideas from the
machine learning literature.

• I: standard pre-processing or encoding the input into an internal feature repre-
sentation

• G: updating memories

• Simplest form: to store I(x) in a slot in the memory mH(x) = I(x)
• More sophisticated form: go back and update earlier stored memories based

on the new evidence from the current input4

• Memory is huge (e.g. Freebase): slot choosing functions H
• Memory is full/overflowed: implementing a ”forgetting” procedure via H to

replace memory slots

• O: reading from memory and preforming inference (e.g., calculating what are the
relevant memories to perform a good response)

• R: producing the final response given O (e.g., embeddings → actual words)

One particular instantiation of a memory network:
- Memory neural networks (MemNNs): the components are neural networks

4similar to LSTM



Outline Introduction MemNN MemNN-WSH Appendix

MemNN Models for Text

Basic MemNN Model for Text:

• (m, I, G,O,R)

Variants of Basic MemNN Model for Text

• Word Sequences as Input

• Efficient Memory via Hashing

• Modeling Writing Time

• Modeling Preivous Unseen Words

• Exact Matches and Unseen Words
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MemNNs for Text: Basic Model
• I: input text– a sentence (the statement of a fact, or a question)

• G: storing text in the next available memory slot in its original form:
mN = x,N = N + 1

G only used to store new memory, old memories are not updated.

• O: producing output features by finding k supporting memories given x
Take k = 2 as an example:

o1 = O1(x,m) = arg maxi=1,...,N sO(x,mi)

o2 = O2(x,m) = arg maxi=1,...,N sO([x,mo1 ],mi)

The final output o: [x,mo1 ,mo2 ]

• R: producing a textual response r

r = arg maxw∈W sR([x,mo1 ,mo2 ], w)

where W is the word vocabulary
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MemNNs for Text: Basic Model (cont.)
Scoring Function for the output and repsonse: sO, sR

s(x, y) = Φx(x)TUTUΦy(y)

where for sO : x− input and supporting memory, y − next supporting memory

for sR : x− output in the feature space, y − actual reponse (words or phrases)

U ∈ Rn×D(UO, UR), n : the embedding dimension, D : the number of features

Φx,Φy : mapping the original text to the D-dimensional feature representation

D = 3|W |, one for Φy(·), two for Φx(·) (input from x or m)

Training: a fully(or strongly) supervised setting

• labeled: inputs and responses, and the supporting sentences (in all steps)

• objective function: a margin ranking loss
For a given question x with true response r and supporting sentences f1 and f2,
minimize:

• Employing RNN for R in MemNN: given [x, o1, o2] to predict r



Outline Introduction MemNN MemNN-WSH Appendix

MemNNs for Text: Basic Model (cont.)
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MemNN: Word Sequences as Input

Situation:

• Input: arrving in a word stream rather than sentence level

• Word sequences: not already segmented as statements and questions

→ Add a segmentation function: sequences → sentences

seg(c) = WT
segUSΦseg(c)

where c is the input word sequence (BoW using a separate dictionary)

If seg(c) > γ (i.e. the margin), this sequence is recognised as a segment.

→ A learning component in MemNN’s write operation



Outline Introduction MemNN MemNN-WSH Appendix

MemNN: Word Sequences as Input

Situation:

• Input: arrving in a word stream rather than sentence level

• Word sequences: not already segmented as statements and questions

→ Add a segmentation function: sequences → sentences

seg(c) = WT
segUSΦseg(c)

where c is the input word sequence (BoW using a separate dictionary)

If seg(c) > γ (i.e. the margin), this sequence is recognised as a segment.

→ A learning component in MemNN’s write operation



Outline Introduction MemNN MemNN-WSH Appendix

MemNN: Efficient Memory via Hashing

Situation:

• The set of stored memories is very large

• Scoring all the memories to find the best supporting one is prohibitively
expensive

→ Exploring hashing tricks to speed up lookup:
hash the input I(x) into one or more buckets and then only score
memories mi that are in the same buckets

• via hashing words: |buckets| = |W |
For a given sentence: hash it into all the buckets corresponding to its
words.
A memory mi will only be considered if it shares at least one word
with the input I(x).

• via clustering word embeddings:
For trained UO, run K-means to cluster word vectors(UO)i → K
buckets.
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MemNN: Modeling Write Time

Answering questions about a story: relative order of events is important
→ Take in to account when a memory slot was written to

• Add extra features to Φx and Φy to encode absolute write time

• Learning a function on triples to get relative time order

• extending the dimensionality of all the Φ embeddings by 3
• Φt(x, y, y

′) uses 3 new features (0-1 values):
whether x is older than y, x older than y′ , and y older than y′

• If sOt(x, y, y
′) > 0, the model perfers y; otherwise y′

→ choosing the best supporting memory: a loop over all the memories
- keeping the winning memory at each step
- always comparing the current winner to the next memory
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Experiments: Large-Scale QA (Triple-KB)
Dataset:

• Pseudo-labeled QA pairs: (a question, an associated triple)

• 14M statements (subject-relation-object triples):
→ stored as memories in the MemNN model

• Triples: REV ERB extractions mined from the ClueWeb09 corpus and
cover diverse topics

• Questions: generated from several seed patterns

• Paraphrased questions: 35M pairs from WikiAnswers

Task: re-ranking the top returned candidate answers by several systems measuring F1
score over the test set
MemNN Model: a k = 1 supporting memory with different variants
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Experiments: Simulated World QA5

Dataset:

• a simple simulation of 4 characters, 3 objects and 5 rooms

• characters: moving around, picking up and dropping objects

• statements (7k for training): generated text using a simple automated
grammar based on actions

• questions (3k for training): mostly about people and position

• answers: single word answers OR a simple grammar for generating
true answers in sentence form

→ a QA task on simple ”stories”

• multiple statements have to be used to do inference

• the complexity of the task: controlled by setting a limit on the number
of time steps in the past the entity we ask the question about was
last mentioned

- limit: 1, only the last mention
- limit: 5, a random mention between 1-5 time steps in the past

5http://fb.ai/babi

http://fb.ai/babi
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Experiments: Simulated World QA (cont.)
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Combined Experiments
Combining simulated world learning with real-world data:

• to show the power and generality of the MemNN models

• build an ensemble of MemNN models trained on large-scale QA and
simulated data

• to answer both general knowledge questions and specific statements
relating to the previous dialogue
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Introduction
MemNN: Strongly Supervised Memory Networks

• Explore how explicit long-term storage can be combined with neural
networks

• Need extensive supervision to train:
• The ground truth answer
• Explicit indication of the supporting sentences within the text

MemNN-WSH: Weakly Supervised Memory Networks

• Learn with weak supervision:
just the answer, without the need for support labels

• Enable the model to operate in more general settings where carefully
curated training data is not available

• Demonstrate that a long-term memory can be integrated into neural
network models that rely on standard input/output pairs for training

→ A content-based memory system:

• Using continuous functions for the read operation

• Sequentially writing all inputs up to a fixed buffer size
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Task Introduction

• A given bAbI6 task consists of a set of statements, followed by a ques-
tion whose answer is typically a single word (in a few tasks, answers
are a set of words).

• There are a total of 20 different types of bAbI tasks that probe dif-
ferent forms of reasoning and deduction.

• Formal Task Description:
- For one of the 20 bAbI tasks, we are given P example problems,
each having a set of I sentences xpi where I320; a question sentence
qp and answer ap.
- The examples are randomly split into disjoint train and test sets
- Let the jth word of sentence i be xij , represented by a one-hot
vector of length V (where |V | = 177 since the bAbI language is very
simple).

6http://fb.ai/babi

http://fb.ai/babi
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MemNN-WSH: Single Layer for a single memory lookup operation

INPUT Side:
implementing content-based addressing, with each memory location
holding a distinct output vector

• For the memory:
Given an input sentence (a statement of facts): xi = {xi1, xi2, ..., xin}
The memory vector mi ∈ Rd: mi =

∑
j Axij

• For the question:
The question vector q is also embedded via matrix B: u =

∑
j Bqj

• For the match between the question u and each memory mi:
The probability vector: pi = softmax(uTmi) = softmax(qTBT

∑
j Axij)

OUTPUT Side:

• Each memory vector on the input has a corresponding output vector
ci: ci =

∑
j Cxij

• The output vector o from the memory: o =
∑

i pici =
∑

i

∑
j piCxij
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MemNN-WSH: Single Layer(cont.)
ANSWER Prediction:

• The sum of the output vector o and the question embedding u is
passed through a final weight matrix W to produce the answer â:
â = softmax(W (o+ u))

Parameters A,B,C and W are jointly learned by minimizing a standard
cross-entropy loss between â and the true answer a.
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MemNN-WSH: Multiple Layers

The single memory layer: only able to answer questions that involve a
single memory lookup.
If a retrieved memory depends on another memory,then multiple
lookups are required to answer the question.
The memory layers are stacked in the following way:

• Input of (k+ 1)th layer is the sum of the output ok and the input uk

from layer k: uk+1 = uk + ok

• Each layer has its own embedding matrices Ak, Ck

• Adjacent: the output embedding for one layer is the input embedding
for the one above: Ak+1 = Ck

• Layer-wise (RNN):the input and output embeddings are the same
across different layers: A1 = A2 = A3,C1 = C2 = C3

• At the top of the network, the answer is predicted as:
â = softmax(W (oK + uK))
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MemNN-WSH: Multiple Layers(cont.)
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MemNN-WSH
Sentence Representation:
• BoW representation: the sum of words mi =

∑
j Axij

• PE representation: Encoding the position of words within the sentence
(used for questions, memory inputs and memory outputs)

mi =
∑
j

lj ·Axij

where · an element-wise multiplication

lj is a column vector with the structure

lkj = (1− j/J)− (k/d) (1− 2j/J)

J is the number of words in the sentence

d is the dimension of the embedding

Temporal Encoding: Relative order of events
• Add notion of temporal context: mi =

∑
j Axij + TA(i)

• Augment the output in the same way: ci =
∑

j Cxij + TC(i)
• Learning time invariance by injecting random noise:

add dummy memories to regularize temporal parameters
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Experiments
Settings:

• The bAbI QA dataset (2 versions): 1k and 10k training problems per task

• All experiments: a 3 layer model - 3 memory lookups

• Weight sharing scheme: Adjacent

• Output lists: take each possible combination of possible outputs and record them
as a separate answer vocabulary word

Baselines:

• MemNN: the strongly supervised Memory Networks (using best reported approach
in the previous paper)

• MemNN-WSH: a weakly supervised heuristic version of MemNN

• the first hop memory should share at least one word with the question
• the second hop memory should share at least one word with the first

hop and at least one word with the answer
• All those memories that conform are called valid memories
• The training objective: learning a margin ranking loss function

to rank valid memories higher than invalid memories

• LSTM: a standard LSTM model trained only with QA pairs
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Experiments(cont.)
Exploring a variety of design choices:

• BoW vs Position Encoding (PE) sentence representation

• training on all 20 tasks jointly (d=50) vs independent training (d=20)
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Experiments(cont.)
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Appendix: Gated Recurrent Neural Networks
LSTM & GRU

Chung, J.,et al. Empirical evaluation of gated recurrent neural networks on sequence
modeling. arXiv’14.

LSTM Unit:

h
j
t = o

j
t tanh(c

j
t )

o
j
t = σ(Woxt + Uoht−1 + Voct)

j

c
j
t = f

j
t c
j
t−1

+ i
j
t c̃
j
t

c̃
j
t = tanh(Wcxt + Ucht−1)

j

f
j
t = σ(Wfxt + Ufht−1 + Vf ct)

j

i
j
t = σ(Wixt + Uiht−1 + Vict)

j

GRU Unit:

h
j
t = (1 − z

j
t )h

j
t−1

+ z
j
t h̃
j
t

z
j
t = σ(Wzxt + Uzht−1)

j

h̃
j
t = tanh(Wxt + U(rt � ht−1))

j

r
j
t = σ(Wrxt + Urht−1)

j
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