Neural Networks for Natural Language Processing

Lili Mou

doublepower.mou@gmail.com

http://sei.pku.edu.cn/~moull12

Neural Networks for Natural Language Processing

Q: Why not "deep learning"?

A: Neural networks are not Lili Mou

necessarily deep. doublepower.mou@gmail.com

http://sei.pku.edu.cn/~moull12

Neural Networks for Natural Language Processing

Q: What is a neural network?

A: A composite function, or just Lili Mou

simply, a function. doublepower.mou@gmail.com

http://sei.pku.edu.cn/~moull12

Outline

- Unsupervised Learning: Word Embeddings
- Discriminative Sentence Models
- Natural Language Generation
- Conclusion and Discussion

Language Modeling

- One of the most fundamental problems in NLP.
- Given a corpus $\mathbf{w} = \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_t$, the goal is to maximize $p(\mathbf{w})$

Language Modeling

- One of the most fundamental problems in NLP.
- Given a corpus w=w₁w₂...w_t, the goal is to maximize p(w)

- Philosophical discussion: Does "probability of a corpus/sentence" make sense?
 - Recognize speech
 - Wreck a nice beach
- All in all, NLP (especially publishing in NLP) is pragmatic.

Decomposition of the Joint probability

• $p(\mathbf{w}) = p(w_1)p(w_1|w_2)p(w_3|w_1w_2) \dots p(w_t|w_1w_2...w_{t-1})$

Decomposition of the Joint probability

• $p(\mathbf{w}) = p(w_1)p(w_1|w_2)p(w_3|w_1w_2) \dots p(w_t|w_1w_2...w_{t-1})$

Minor question:

- Can we decompose any probabilistic distribution into this form? Yes.
- Is it necessary to decompose a probabilistic distribution into this form? No.

[1] Lili Mou, Rui Yan, Ge Li, Lu Zhang, Zhi Jin. "Backward and forward language modeling for constrained sentence generation." arXiv preprint arXiv:1512.06612, 2015.

Markov Assumption

•
$$p(\mathbf{w}) = p(w_1)p(w_1|w_2)p(w_3|w_1w_2) \dots p(w_t|w_1w_2...w_{t-1})$$

 $\approx p(w_1)p(w_1|w_2)p(w_3|w_2) \dots p(w_t|w_{t-1})$

- A word is dependent only on its previous n-1 words and independent of its position,
 - I.e., provided with the previous n-1 words, the current word is independent of other random variables.

$$p(\boldsymbol{w}) \approx \prod_{t=1}^{m} p\left(w_{t} \middle| \boldsymbol{w}_{t-n+1}^{t-1}\right)$$

Multinomial Estimate

 Maximum likelihood estimation for a multinomial distribution is merely counting.

$$p(w_n|\boldsymbol{w}_1^{n-1}) = \frac{\#\boldsymbol{w}_1^n}{\#\boldsymbol{w}_1^{n-1}}$$

- Problems
 - #para grows exp. w.r.t. *n*
 - Even for very small n (e.g., 2 or 3), we come across severe data sparsity because of the Zipf distribution

Parameterizing LMs with Neural Networks

- Each word is mapped to a real-valued vector, called embeddings.
- Neural layers capture context information (typically previous words).
- The probability p(wl·) is predicted by a softmax layer.

Feed-Forward Language Model

Recurrent Neural Language Model

- RNN keeps one or a few hidden states
- The hidden states change at each time step according to the input

$$h_t = \text{RNN}(\boldsymbol{x}_t, \boldsymbol{h}_{t-1})$$

$$= f(W_{\text{in}}\boldsymbol{x}_t + W_{\text{hid}}\boldsymbol{h}_{t-1})$$

$$p(w_t|\boldsymbol{w}_0^{t-1}) \approx \text{softmax}(W_{\text{out}}\boldsymbol{h}_t)$$

• RNN directly parametrizes $p(\boldsymbol{w}) = \prod_{t=1}^m p(w_t | \boldsymbol{w}_1^{t-1})$ rather than $p(\boldsymbol{w}) \approx \prod_{t=1}^m p\left(w_t | \boldsymbol{w}_{t-n+1}^{t-1}\right)$

[3] Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. In INTERSPEECH, 2010.

Complexity Concerns

- Time complexity
 - Hinge loss [4]
 - Hierarchical softmax [5]
 - Noisy contrastive estimation [6]
- Model complexity
 - Shallow neural networks are still too "deep."
 - CBOW, SkipGram [6]
 - Model compression [under review]
- [4] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. JMLR, 2011.
- [5] Mnih A, Hinton GE. A scalable hierarchical distributed language model. NIPS, 2009.
- [6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013

The Role of Word Embeddings?

- Word embeddings are essentially a connectional weight matrix, whose input is a one-hot vector.
- Implementing by a look-up table is much faster than matrix multiplication.
- Each column of the matrix corresponds to a word.

One-hot representation of word *i* (sparse)

How can we use word embeddings?

- Embeddings demonstrate the internal structures of words
 - Relation represented by vector offset"man" "woman" = "king" "queen"
 - Word similarity
- Embeddings serve as the initialization of almost every supervised task
 - A way of pretraining
 - N.B.: may not be useful when the training set is large enough

Word Embeddings in our Brain

[7] Huth, Alexander G., et al. "Natural speech reveals the semantic maps that tile human cerebral cortex." Nature 532.7600 (2016): 453-458.

"Somatotopic Embeddings" in our Brain

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007

Deep neural networks: To be, or not to be? That is the question.

CBOW, SkipGram (word2vec)

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013

Hierarchical Softmax and Negative Contrastive Estimation

HS

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \text{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

NCE

$$\log \sigma(v'_{w_O}^{\mathsf{T}} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_{w_i}^{\mathsf{T}} v_{w_I}) \right]$$

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013

Tricks in Training Word Embeddings

- The # of negative samples?
 - The more, the better.
- The distribution from which negative samples are generated? Should negative samples be close to positive samples?
 - The closer, the better.

Full softmax vs. NCE vs. HS vs. hinge loss?

Outline

- Unsupervised Learning: Word Embeddings
- Discriminative Sentence Models
- Natural Language Generation
- Conclusion and Discussion

(Discriminative) Sentence Modeling

 To encode a sentence as a vector, capturing some semantics/meanings of the sentence

- Sentence classification (e.g., sentiment analysis)
- A whole bunch of downstream applications
 - Sentence matching,
 - Discourse analysis,
 - Extractive summarization, and even
 - Parsing

Convolutional Neural Networks (CNNs)

- Convolution in signal processing: Linear time-invariant system
 - Flip, inner-product, and slide
- Convolution in the neural network regime
 - Sliding window

[4] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. JMLR, 2011.

Convolutional Neural Networks (CNNs)

[9] Blunsom, Phil, Edward Grefenstette, and Nal Kalchbrenner. "A Convolutional Neural Network for Modelling Sentences." ACL, 2014.

Recurrent Neural Networks (RNNs)

Pretty much similar to RNN LM

outer

[10] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng and Zhi Jin. "Classifying relations via long short term memory networks along shortest dependency paths." In EMNLP, pages 1785--1794, 2015.

[11] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, Zhi Jin. "Improved relation classification by deep recurrent neural networks with data augmentation." arXiv preprint arXiv:1601.03651, 2016.

Recursive Neural Networks (RNNs again)

- Where does the tree come from?
 - Dynamically constructing a tree structure similar to constituency
 - Parsed by external parsers

Constituency tree

- Leaf nodes = words
- Interior nodes = abstractcomponents of a sentence(e.g., noun phrase)
- Root nodes = the whole sentence

Why parse trees may be important?

Tree structure The dog the stick the fire burned beat bit the cat. Convolution

[12] Pinker, Steven. The Language Instinct: The New Science of Language and Mind. Penguin UK, 1995.

Recursive Propagation

Perception-like interaction [13]

$$p = f(W[c_1 c_2]^T)$$

Matrix-vector interaction [14]

$$p_1 = f\left(W \left[egin{array}{c} Cb \\ Bc \end{array}
ight]\right), P_1 = f\left(W_M \left[egin{array}{c} B \\ C \end{array}
ight]\right)$$

• Tensor interaction [15]

$$p_1 = f\left(\left[\begin{array}{c} b \\ c \end{array}\right]^T V^{[1:d]} \left[\begin{array}{c} b \\ c \end{array}\right] + W \left[\begin{array}{c} b \\ c \end{array}\right]\right)$$

[13] Socher R, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions. EMNLP, 2011

[14] Socher, R, et al. "Semantic compositionality through recursive matrix-vector spaces." EMNLP-CoNLL, 2012.

[15] Socher, R, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." EMNLP, 2013.

Recurrent Propagation

• Perception-like interaction [13]

$$p = f(W[c_1 c_2]^T)$$

Matrix-vector interaction [14]

$$p_1 = f\left(W \left[egin{array}{c} Cb \\ Bc \end{array}
ight]\right), P_1 = f\left(W_M \left[egin{array}{c} B \\ C \end{array}
ight]\right)$$

• Tensor interaction [15]

$$p_1 = f\left(\left[\begin{array}{c} b \\ c \end{array}\right]^T V^{[1:d]} \left[\begin{array}{c} b \\ c \end{array}\right] + W \left[\begin{array}{c} b \\ c \end{array}\right]\right)$$

- [13] Socher R, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions. EMNLP, 2011
- [14] Socher, R, et al. "Semantic compositionality through recursive matrix-vector spaces." EMNLP-CoNLL, 2012.
- [15] Socher, R, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." EMNLP, 2013.

Even More Interaction

• LSTM interaction [16, 17, 18]

$$\begin{split} \tilde{h}_{j} &= \sum_{k \in C(j)} h_{k}, \\ i_{j} &= \sigma \left(W^{(i)} x_{j} + U^{(i)} \tilde{h}_{j} + b^{(i)} \right), \\ f_{jk} &= \sigma \left(W^{(f)} x_{j} + U^{(f)} h_{k} + b^{(f)} \right), \\ o_{j} &= \sigma \left(W^{(o)} x_{j} + U^{(o)} \tilde{h}_{j} + b^{(o)} \right), \\ u_{j} &= \tanh \left(W^{(u)} x_{j} + U^{(u)} \tilde{h}_{j} + b^{(u)} \right), \\ c_{j} &= i_{j} \odot u_{j} + \sum_{k \in C(j)} f_{jk} \odot c_{k}, \\ h_{j} &= o_{j} \odot \tanh(c_{j}), \end{split}$$

[16] Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. "Improved semantic representations from tree-structured long short-term memory networks." ACL, 2015

[17] Zhu, Xiaodan, Parinaz Sobihani, and Hongyu Guo. "Long short-term memory over recursive structures." ICML, 2015.

[18] Le, Phong, and Willem Zuidema. "Compositional distributional semantics with long short term memory." arXiv:1503.02510 (2015).

Even More Interaction

LSTM interaction [16, 17, 18]

To be a good scientist:

- Challenge authority.

To be a good academia:

Cite authority. Make friends.

$$\begin{split} \tilde{h}_j &= \sum_{k \in C(j)} h_k, \\ i_j &= \sigma \left(W^{(i)} x_j + U^{(i)} \tilde{h}_j + b^{(i)} \right), \\ f_{jk} &= \sigma \left(W^{(f)} x_j + U^{(f)} h_k + b^{(f)} \right), \\ o_j &= \sigma \left(W^{(o)} x_j + U^{(o)} \tilde{h}_j + b^{(o)} \right), \\ u_j &= \tanh \left(W^{(u)} x_j + U^{(u)} \tilde{h}_j + b^{(u)} \right), \\ c_j &= i_j \odot u_j + \sum_{k \in C(j)} f_{jk} \odot c_k, \\ h_j &= o_j \odot \tanh(c_j), \end{split}$$

[16] Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. "Improved semantic representations from tree-structured long short-term memory networks." ACL, 2015

[17] Zhu, Xiaodan, Parinaz Sobihani, and Hongyu Guo. "Long short-term memory over recursive structures." ICML, 2015.

[18] Le, Phong, and Willem Zuidema. "Compositional distributional semantics with long short term memory." arXiv:1503.02510, 2015.

Tree-Based Convolutional Neural Network (TBCNN)

- CNNs
 - © Efficient feature learning and extraction

The propagation path is irrelevant to the length of a sentence

- Structure insensitive
- Recursive networks
 - © Structure sensitive
 - Long propagation path

The problem of "gradient vanishing or explosion"

Our intuition

- Can we combine?
 - Structure sensitive as recursive neural networks
 - Short propagation path as convolutional neural networks
- Solution
 - The tree-based convolutional neural network (TBCNN)
 - Recall convolution = sliding window in the NN regime
 - Tree-based convolution = sliding window of a subtree

Tree-Based Convolution

$$oldsymbol{y} = f\left(\sum_{i=1}^t W_i \!\cdot\! oldsymbol{x}_i + oldsymbol{b}\right)$$

[19] Lili Mou, Ge Li, Lu Zhang, Tao Wang, Zhi Jin. "Convolutional neural networks over tree structures for programming language processing." In AAAI, pages 1287--1293, 2016.

[20] Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, Zhi Jin. "Discriminative neural sentence modeling by tree-based convolution." In EMNLP, pages 2315--2325, 2015.

A Few Variants

$$\boldsymbol{y} = f\left(W_p^{(c)} \cdot \boldsymbol{p} + W_l^{(c)} \cdot \boldsymbol{c}_l + W_r^{(c)} \cdot \boldsymbol{c}_r + \boldsymbol{b}^{(c)}\right) \quad \boldsymbol{y} = f\left(W_p^{(d)} \cdot \boldsymbol{p} + \sum_{i=1}^n W_{r[c_i]}^{(d)} \cdot \boldsymbol{c}_i + \boldsymbol{b}^{(d)}\right)$$

Wrap Up

		Way of information propagation			
		Iterative	Sliding		
Structure	Flat	Recurrent	Convolution		
	Tree	Recursive	Tree-base convolution		

A glance at how sentence modeling benefits downstream tasks

[21] Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, Zhi Jin. "Natural language inference by tree-based convolution and heuristic matching." ACL(2), 2016.

Outline

- Unsupervised Learning: Word Embeddings
- Discriminative Sentence Models
- Natural Language Generation
- Conclusion and Discussion

Applications of Natural Language Generation

- Machine translation
- Question answering
- Conversation systems
- Generative summarization

Sequence to Sequence Generation

- Training phrase: X, Y, and Z are the ground truth (words in the corpus)
- Predicting phrase: X, Y, and Z are those generated by RNN
- Seq2seq model is essentially an LM (of XYZ) conditioned on another LM (of ABC)

[22] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." NIPS. 2014.

The Attention Mechanism

- During sequence generation, the output sequence's hidden state $m{h}_t$ is related to
 - That of the last time step h_{t-1} , and
 - A context vector *c*, which is a combination of the input sequence's states

$$h_t = \text{RNN}(h_{t-1}, c) = f(W[h_{t-1}; c])$$

[23] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." arXiv preprint arXiv:1409.0473 (2014).

Context Vector

The context vector ${m c}$ is a combination of the input sequence's states ${m c} = \sum_i \alpha_i {m c}_i$

where the coefficient α_i is related to

- The local context $oldsymbol{c}_i$, and
- The last output state $oldsymbol{h}_{t-1}$
- α_i is normalized

$$\alpha_i = \frac{\exp{\{\tilde{\alpha}_i\}}}{\sum_j \exp{\{\tilde{\alpha}_j\}}}$$
 $\tilde{\alpha}_i = W[\boldsymbol{h}_{t-1}; \boldsymbol{c}_i]$

Sequence-Level Training

- Motivation: We don't have the ground truth
 - In a dialogue system, "The nature of of open-domain conversations shows that a variety of replies are plausible, but some are more meaningful, and others are not." [21]
- Optimize the sequence generator as a whole in terms of external metrics

REINFORCE

[25] Ranzato, Marc'Aurelio, et al. "Sequence Level Training with Recurrent Neural Networks." ICLR, 2016.

- Define an external cost function on a generated sequence
- Generate words by sampling
- Take the derivative of generated samples

$$\begin{split} L_{\theta} &= -\sum_{w_1^g, \dots, w_T^g} p_{\theta}(w_1^g, \dots, w_T^g) r(w_1^g, \dots, w_T^g) = -\mathbb{E}_{[w_1^g, \dots w_T^g] \sim p_{\theta}} r(w_1^g, \dots, w_T^g) \\ & \quad \quad \partial \mathbf{p}(\mathbf{w}) = \mathbf{p}(\mathbf{w}) \partial \log \mathbf{p}(\mathbf{w}) \text{ because } \mathbf{p}(\mathbf{w}) = \exp\{\log \mathbf{p}(\mathbf{w})\} \end{split}$$

•
$$\partial J = \sum_{\mathbf{w}} [\partial p(\mathbf{w}|...)] r(\mathbf{w}) = \sum_{\mathbf{w}} p(\mathbf{w}) [\partial \log p(\mathbf{w})] r(\mathbf{w})$$

$$(p_{\theta}(w_{t+1}|w_t^g, \mathbf{h}_{t+1}, \mathbf{c}_t) - \mathbf{1}(w_{t+1}^g))$$

where o_t is the input to the softmax.

Outline

- Unsupervised Learning: Word Embeddings
- Discriminative Sentence Models
- Natural Language Generation
- Conclusion and Discussion

Outline

- Unsupervised Learning: Word Embeddings
- Discriminative Sentence Models
- Natural Language Generation
- Conclusion and Discussion

Discussion

Challenge of end-to-end learning:

	avg	sum	max	attention	argmax
Differentiability	©	©	©	©	
Supervision	<u></u>	<u></u>	<u></u>	<u></u>	
Scalability					©

Intuition

- Using external information to guide an NN instead of designing end-to-end machines
 - Better performance in short term
 - May or may not conform to the goal of AI,
 depending on how strict the external information is

	Hard mechanism
Differentiability	©
Supervision	©
Scalability	©

Thank you for listening!

Questions?

References

- [1] Lili Mou, Rui Yan, Ge Li, Lu Zhang, Zhi Jin. "Backward and forward language modeling for constrained sentence generation." arXiv preprint arXiv:1512.06612, 2015.
- [2] Bengio, Yoshua, Réjean Ducharme, Pascal Vincent, and Christian Jauvin. "A Neural Probabilistic Language Model." JMLR, 2003.
- [3] Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. In INTERSPEECH, 2010.
- [4] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. JMLR, 2011.
- [5] Mnih A, Hinton GE. A scalable hierarchical distributed language model. NIPS, 2009.
- [6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781, 2013.
- [7] Huth, Alexander G., et al. "Natural speech reveals the semantic maps that tile human cerebral cortex." Nature 532.7600 (2016): 453-458.
- [8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007

- [9] Blunsom, Phil, Edward Grefenstette, and Nal Kalchbrenner. "A Convolutional Neural Network for Modelling Sentences." ACL, 2014.
- [10] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng and Zhi Jin. "Classifying relations via long short term memory networks along shortest dependency paths." In EMNLP, pages 1785--1794, 2015.
- [11] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, Zhi Jin. "Improved relation classification by deep recurrent neural networks with data augmentation." arXiv preprint arXiv:1601.03651, 2016.
- [12] Pinker, Steven. The Language Instinct: The New Science of Language and Mind. Penguin UK, 1995.
- [13] Socher R, et al. Semi-supervised recursive autoencoders for predicting sentiment distributions. EMNLP, 2011
- [14] Socher, R, et al. "Semantic compositionality through recursive matrix-vector spaces." EMNLP-CoNLL, 2012.
- [15] Socher, R, et al. "Recursive deep models for semantic compositionality over a sentiment treebank." EMNLP, 2013.
- [16] Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. "Improved semantic representations from tree-structured long short-term memory networks." ACL, 2015

- [17] Zhu, Xiaodan, Parinaz Sobihani, and Hongyu Guo. "Long short-term memory over recursive structures." ICML, 2015.
- [18] Le, Phong, and Willem Zuidema. "Compositional distributional semantics with long short term memory." arXiv:1503.02510 (2015).
- [19] Lili Mou, Ge Li, Lu Zhang, Tao Wang, Zhi Jin. "Convolutional neural networks over tree structures for programming language processing." In AAAI, pages 1287--1293, 2016.
- [20] Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, Zhi Jin. "Discriminative neural sentence modeling by tree-based convolution." In EMNLP, pages 2315--2325, 2015.
- [21] Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, Zhi Jin. "Natural language inference by tree-based convolution and heuristic matching." ACL(2), 2016.
- [22] Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." NIPS. 2014.
- [23] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR, 2015.
- [24] Xiang Li, Lili Mou, Rui Yan, Ming Zhang. "StalemateBreaker: A proactive content-introducing approach to automatic human-computer conversation." IJCAI, 2016.
- [25] Ranzato, Marc'Aurelio, et al. "Sequence Level Training with Recurrent Neural Networks." ICLR, 2016.