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Language Modeling

 One of the most fundamental problems in NLP.

« Given a corpus w=w,w,...w, the goal is to maximize p(w)



Language Modeling

 One of the most fundamental problems in NLP.

« Given a corpus w=w,w,...w, the goal is to maximize p(w)

 Philosophical discussion: Does “probability of a
corpus/sentence” make sense?

— Recognize speech
— Wreck a nice beach

 Allin all, NLP (especially publishing in NLP) is pragmatic.



Decomposition of the Joint probability

* P(W)=P(W,)p(W,IW,)p(WolW,Wsy) ... D(WIW, W, W, )



Decomposition of the Joint probability

 p(w)= p(W1)p(W1|W2)p(W3|W1W2) p(Wt|W1W2"'Wt-1)

Minor question:

« Can we decompose any probabilistic distribution into this
form? Yes.

* |s it necessary to decompose a probabilistic distribution
into this form? No.

[1] Lili Mou, Rui Yan, Ge Li, Lu Zhang, Zhi Jin. "Backward and forward language modeling for
constrained sentence generation." arXiv preprint arXiv:1512.06612, 2015.



Markov Assumption

o p(W)=p(w,)p(w,Iw,)p(wylw,w,) ... p(wlw,w,..w,,)

=~ p(W1)p(W1|W2)p(W3|W2) p(thwH)

A word is dependent only on its previous n-1 words and
independent of its position,

|.e., provided with the previous n-1 words, the current word is
independent of other random variables.

p(’lﬂ) ~ H:? 1}'} (“f‘wt n—{—l)



Multinomial Estimate

« Maximum likelihood estimation for a multinomial distribution is merely
counting.

( n|wn 1)_ #’LU?

#wﬂ,—

e Problems

— #para grows exp. w.r.t. n

— Even for very small n (e.g., 2 or 3), we come across severe data sparsity
because of the Zipf distribution



Parameterizing LMs with Neural Networks

 Each word is mapped to a real-valued vector, called
embeddings.

 Neural layers capture context information (typically
previous words).

 The probability p(wl-) is predicted by a softmax layer.



Feed-Forward Language Model
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Recurrent Neural Language Model

* RNN keeps one or a few hidden states

 The hidden states change at each time step according to
the input

O N O h; = RNN(z;, hs_1)
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« RNN directly parametrizes plw) = H
rather than p(w) ~ [
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[3] Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S. Recurrent neural network based language model. In
INTERSPEECH, 2010.



Complexity Concerns
 Time complexity
— Hinge loss [4]
— Hierarchical softmax [5]

— Noisy contrastive estimation [6]
* Model complexity

— Shallow neural networks are still too “deep.”
- CBOW, SkipGram [6]
— Model compression [under review]

[4] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language
processing (almost) from scratch. JMLR, 2011.

[5] Mnih A, Hinton GE. A scalable hierarchical distributed language model. NIPS, 2009.

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781. 2013



The Role of Word Embeddings?

» Word embeddings are essentially a connectional weight
matrix, whose input is a one-hot vector.

 Implementing by a look-up table is much faster than
matrix multiplication.

e Each column of the matrix corresponds to a word.

r ™ 0

o | |
Ao gl
Embedding of word i

retrieved by matrix-vector
multiplication
0

LS -

One-hot representation of
word 7 (sparse)




How can we use word embeddings?

e Embeddings demonstrate the internal structures of words
— Relation represented by vector offset
‘man” - "‘woman” = “king” - “queen’
— Word similarity

e Embeddings serve as the initialization of almost every
supervised task

— A way of pretraining

— N.B.: may not be useful when the training set is large enough



Word Embeddings in our Brain
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[7] Huth, Alexander G., et al. "Natural speech reveals the semantic
maps that tile human cerebral cortex.” Nature 532.7600 (2016):
453-458.



“Somatotopic Embeddings” in our Brain

FIGURE 12.18

A somatotopic map of the body surface
onto primary somatosensory cortex.
This map is a cross section through the post-
central gyrus (shown at top). Meurons in each
area are most responcve to the parts of the
body illustrated above them. (Source: Adapted
from Perfield and Rasmussen, 1951)

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007
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FIGURE 12.19
The homunculus.

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007



Deep neural networks:
To be, or not to be? That is the question.



CBOW, SkipGram (word2vec)
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[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781. 2013



Hierarchical Softmax and Negative
Contrastive Estimation
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[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781. 2013



Tricks in Training Word Embeddings

 The # of negative samples?
— The more, the better.

e The distribution from which negative samples are
generated? Should negative samples be close to positive
samples?

— The closer, the better.

o Full softmax vs. NCE vs. HS vs. hinge loss?
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(Discriminative) Sentence Modeling

» To encode a sentence as a vector, capturing some
semantics/meanings of the sentence

 Sentence classification (e.g., sentiment analysis)

A whole bunch of downstream applications

— Sentence matching,

— Discourse analysis,

— Extractive summarization, and even
— Parsing



Convolutional Neural Networks (CNNs)

 Convolution in signal processing: Linear time-invariant system
— Flip, inner-product, and slide

 Convolution in the neural network regime

— Sliding window
) Output layer
t
Pooling layer

Extracted / T \
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Embeddings === === ===
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Convolutional Neural Networks (CNNs)

/%m//w/

B / /

Tha cat sal on the red mat

[9] Blunsom, Phil, Edward Grefenstette, and Nal Kalchbrenner. "A Convolutional Neural Network for
Modelling Sentences." ACL, 2014.



Recurrent Neural Networks (RNNs)
 Pretty much similar to RNN LM
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[10] Yan Xu, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng and Zhi Jin. "Classifying
relations via long short term memory networks along shortest dependency paths.” ——_—
In EMNLP, pages 1785--1794, 2015.

[11] Yan Xu, Ran Jia, Lili Mou, Ge Li, Yunchuan Chen, Yangyang Lu, Zhi Jin.
"Improved relation classification by deep recurrent neural networks with data
augmentation.” arXiv preprint arXiv:1601.03651, 2016.



Recursive Neural Networks (RNNs again)

 Where does the tree come from?

— Dynamically constructing a tree structure similar to constituency
— Parsed by external parsers

Constituency tree

_ _ A Representing hidden
Leaf nodes = words eee]| layers as vectors

~ Interior nodes = abstract / \Ecursivel}’
W W
/ ¥

components of a sentence oo X
(e.g., noun phrase) / \
W, W
— Root nodes = the whole YT [
sentence

Word embeddings



Why parse trees may be important?

Tree structure

/

The dog the stick the fire burned beat bit the cat.

DR w

[12] Pinker, Steven. The Language Instinct: The New Science of Language and Mind. Penguin UK, 1995.




Recursive Propagation
 Perception-like interaction [13]

p=f(WI[c, c,]")
« Matrix-vector interaction [14] }P&

o I e e T H (a,A) (p1.P1)
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 Tensor interaction [15]

b - 7[1:d] K b
= ¥ . | . + W I

[13] Socher R, et al. Semi-supervised recursive autoencoders for predicting sentiment
distributions. EMNLP, 2011

[14] Socher, R, et al. "Semantic compositionality through recursive matrix-vector spaces."
EMNLP-CoNLL, 2012,

[15] Socher, R, et al. "Recursive deep models for semantic compositionality over a sentiment
treebank." EMNLP, 2013.



Recurrent Propagation

 Perception-like interaction [13]

Neural Tensor Layer
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[13] Socher R, et al. Semi-supervised recursive autoencoders for predicting sentiment
distributions. EMNLP, 2011

[14] Socher, R, et al. "Semantic compositionality through recursive matrix-vector spaces."
EMNLP-CoNLL, 2012,

[15] Socher, R, et al. "Recursive deep models for semantic compositionality over a sentiment
treebank." EMNLP, 2013.




Even More Interaction
= ¥ iy
e LSTM interaction [16, 17, 18] iy = o (W, + UOR; +0)
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[16] Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. “Improved semantic
representations from tree-structured long short-term memory networks." ACL, 2015

[17] Zhu, Xiaodan, Parinaz Sobihani, and Hongyu Guo. "Long short-term memory over recursive
structures." ICML, 2015.

[18] Le, Phong, and Willem Zuidema. "Compositional distributional semantics with long short
term memory." arXiv:1503.02510 (2015).



Even More Interaction
;:-,j = Z hi,
e LSTM interaction [16, 17, 18] ij = 0 (WO, + U0k +40),
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To be a good scientist:
— Challenge authority.
To be a good academia: ci=4i0uj+ Y fikO@ck,

— Cite authority. Make friends. k€C (1)
h; = 0; ® tanh(c;)

u; = tanh (W’{”]:rj + U[”]ﬁj + b{“)) :
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[16] Tai, Kai Sheng, Richard Socher, and Christopher D. Manning. “Improved semantic
representations from tree-structured long short-term memory networks." ACL, 2015

[17] Zhu, Xiaodan, Parinaz Sobihani, and Hongyu Guo. "Long short-term memory over recursive
structures." ICML, 2015.

[18] Le, Phong, and Willem Zuidema. "Compositional distributional semantics with long short
term memory." arXiv:1503.02510, 2015.



Tree-Based Convolutional Neural Network
(TBCNN)
e CNNs

@ Efficient feature learning and extraction
The propagation path is irrelevant to the length of a sentence

& Structure insensitive
e Recursive networks
© Structure sensitive

& Long propagation path

The problem of “gradient vanishing or explosion”




Our intuition

« Can we combine?

— Structure sensitive as recursive neural networks

— Short propagation path as convolutional neural networks
 Solution

— The tree-based convolutional neural network (TBCNN)

* Recall convolution = sliding window in the NN regime
 Tree-based convolution = sliding window of a subtree



Tree-Based Convolution

X fully fully
pooling connected | |connected
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[19] Lili Mou, Ge Li, Lu Zhang, Tao Wang, Zhi Jin. "Convolutional neural networks over tree structures for
programming language processing.” In AAAI, pages 1287--1293, 2016.

[20] Lili Mou, Hao Peng, Ge Li, Yan Xu, Lu Zhang, Zhi Jin. "Discriminative neural sentence modeling by
tree-based convolution." In EMNLP, pages 2315--2325, 2015.



A Few Variants
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Wrap Up

Way of information propagation

[terative Sliding
© | Flat || Recurrent Convolution
2
J
=
on | Tree || Recursive | Tree-base convolution




A glance at how sentence modeling benefits
downstream tasks

? .« Extracted
Word embeddines e Sentence

by, TBCNN embeddings

along dependency
trees

Premise

|
Y

~ ~ o
(a) Individual sentence (b) Combining two
modeling by TBCNN sentences by heuristics

[21] Lili Mou, Rui Men, Ge Li, Yan Xu, Lu Zhang, Rui Yan, Zhi Jin. "Natural language
inference by tree-based convolution and heuristic matching." ACL(2), 2016.
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Applications of Natural Language Generation

» Machine translation
* Question answering
 Conversation systems

e (Generative summarization



Sequence to Sequence Generation
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* Training phrase: X, Y, and Z are the ground truth (words in the
corpus)

 Predicting phrase: X, Y, and Z are those generated by RNN

« Seq2seq model is essentially an LM (of XYZ) conditioned on
another LM (of ABC)

[22] Sutskever, llya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with
neural networks." NIPS. 2014.



The Attention Mechanism

 During sequence generation, the output sequence's
hidden state h; is related to

— That of the last time step h,_ 1, and

— A context vector ¢, which is a combination of the input
sequence's states

ht — fil\TN(ht_lTJ C) — f(W[ht_lg CD

[23] Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine
translation by jointly learning to align and translate.” arXiv preprint
arXiv:1409.0473 (2014).



Context Vector

The context vector ¢ is a combination of the input
sequence's states ¢ — Z o, C;

where the coefficient «; is related to

— The local context ¢; , and
— The last output state ;1

-« Is normalized

- explay) _ |
YT Sewtay = Wihesed




Sequence-Level Training

 Motivation: We don't have the ground truth

In a dialogue system, “The nature of of open-domain
conversations shows that a variety of replies are plausible, but
some are more meaningful, and others are not.” [21]

 Optimize the sequence generator as a whole in terms of
external metrics

[24] Xiang Li, Lili Mou, Rui Yan, Ming Zhang. "StalemateBreaker: A proactive
content-introducing approach to automatic human-computer conversation." [JCAI, 2016.



R E | N F O R C E [25] Ranzato, Marc'Aurelio, et al. "Sequence Level Training with
Recurrent Neural Networks." ICLR, 2016.

* Define an external cost function on a generated sequence
 Generate words by sampling
 Take the derivative of generated samples

LE' - Z f.-i'g{'”_'f: C -L.”:I;I:]{'JIT{ H"ITI! Tt ”.I':]ILJ‘I — _E[If'?:-..Ir'-!}-ll“*--ﬂ'.-'rrr{-”.l::];- 1 .L.“-_';:]'LJ

aP(w)=p(w) glog p(w) because p( )=exp{log p(w)}

0J =§[a p(wl...) Zp )[dlog p(w)] r(w)

(po(witi|wf hyiy,ee) — L(w?, )

where oy 1s the input to the softmax.
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Discussion

Challenge of end-to-end learning:

avg sum  max  attention argmax
Differentiability =~ @ © © ©
Supervision @ @ ®© 6 B
Scalability B B @)




Intuition

o Using external information to guide an NN instead of designing
end-to-end machines
— Better performance in short term
— May or may not conform to the goal of Al,
depending on how strict the external information is

Hard mechanism

Differentiability =~ @

Supervision @)

Scalability @)




Thank you for listening!

Questions?
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