Neural Networks in NLP: The Curse of Indifferentiability

Lili Mou

doublepower.mou@gmail.com

http://sei.pku.edu.cn/~moull12

Outline

- Preliminary
 - Word embeddings
 - Sequence-to-sequence generation
- Indifferentiability, solutions, and applications
- A case study in semantic parsing

Language Modeling

- One of the most fundamental problems in NLP.
- Given a corpus $\mathbf{w} = \mathbf{w}_1 \mathbf{w}_2 \dots \mathbf{w}_t$, the goal is to maximize $\mathbf{p}(\mathbf{w})$

Language Modeling

- One of the most fundamental problems in NLP.
- Given a corpus w=w₁w₂...w_t, the goal is to maximize p(w)

- Philosophical discussion: Does "probability of a corpus/sentence" make sense?
 - Recognize speech
 - Wreck a nice beach
- All in all, NLP (especially publishing in NLP) is pragmatic.

Decomposition of the Joint probability

• $p(\mathbf{w}) = p(w_1)p(w_1|w_2)p(w_3|w_1w_2) \dots p(w_t|w_1w_2...w_{t-1})$

Decomposition of the Joint probability

• $p(\mathbf{w}) = p(w_1)p(w_1|w_2)p(w_3|w_1w_2) \dots p(w_t|w_1w_2...w_{t-1})$

Minor question:

- Can we decompose any probabilistic distribution into this form? Yes.
- Is it necessary to decompose a probabilistic distribution into this form? No.

Lili Mou, Yiping Song, Rui Yan, Ge Li, Lu Zhang, Zhi Jin. "Sequence to backward and forward sequences: A content-introducing approach to generative short-text conversation." In COLING, 2016.

Markov Assumption

•
$$p(\mathbf{w}) = p(w_1)p(w_1|w_2)p(w_3|w_1w_2) \dots p(w_t|w_1w_2...w_{t-1})$$

 $\approx p(w_1)p(w_1|w_2)p(w_3|w_2) \dots p(w_t|w_{t-1})$

- A word is dependent only on its previous n-1 words and independent of its position,
 - I.e., provided with the previous n-1 words, the current word is independent of other random variables.

$$p(\boldsymbol{w}) \approx \prod_{t=1}^{m} p\left(w_t \middle| \boldsymbol{w}_{t-n+1}^{t-1}\right)$$

Multinomial Estimate

 Maximum likelihood estimation for a multinomial distribution is merely counting.

$$p(w_n|\mathbf{w}_1^{n-1}) = \frac{\#\mathbf{w}_1^n}{\#\mathbf{w}_1^{n-1}}$$

- Problems
 - #para grows exp. w.r.t. *n*
 - Even for very small n (e.g., 2 or 3), we come across severe data sparsity because of the Zipf distribution

Parameterizing LMs with Neural Networks

- Each word is mapped to a real-valued vector, called embeddings.
- Neural layers capture context information (typically previous words).
- The probability p(wl·) is predicted by a softmax layer.

Feed-Forward Language Model

Recurrent Neural Language Model

- RNN keeps one or a few hidden states
- The hidden states change at each time step according to the input

$$h_t = \text{RNN}(\boldsymbol{x}_t, \boldsymbol{h}_{t-1})$$

$$= f(W_{\text{in}}\boldsymbol{x}_t + W_{\text{hid}}\boldsymbol{h}_{t-1})$$

$$p(w_t|\boldsymbol{w}_0^{t-1}) \approx \text{softmax}(W_{\text{out}}\boldsymbol{h}_t)$$

• RNN directly parametrizes $p(\boldsymbol{w}) = \prod_{t=1}^m p(w_t | \boldsymbol{w}_1^{t-1})$ rather than $p(\boldsymbol{w}) \approx \prod_{t=1}^m p\left(w_t | \boldsymbol{w}_{t-n+1}^{t-1}\right)$

Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. In INTERSPEECH, 2010.

Complexity Concerns

- Time complexity
 - Hierarchical softmax [1]
 - Negative sampling: Hinge loss [2], Noisy contrastive estimation [3]
- Memory complexity
 - Compressing LM [4]
- Model complexity
 - Shallow neural networks are still too "deep."
 - CBOW, SkipGram [3]
- [1] Mnih A, Hinton GE. A scalable hierarchical distributed language model. NIPS, 2009.
- [2] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. JMLR, 2011.
- [3] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013
- [4] Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, Zhi Jin. "Compressing neural language models by sparse word representations." In ACL, 2016.

The Role of Word Embeddings?

- Word embeddings are essentially a connectional weight matrix, whose input is a one-hot vector.
- Implementing by a look-up table is much faster than matrix multiplication.
- Each column of the matrix corresponds to a word.

One-hot representation of word *i* (sparse)

How can we use word embeddings?

- Embeddings demonstrate the internal structures of words
 - Relation represented by vector offset"man" "woman" = "king" "queen"
 - Word similarity
- Embeddings can serve as the initialization of almost every supervised task
 - A way of pretraining
 - N.B.: may not be useful when the training set is large enough

Word Embeddings in our Brain

Huth, Alexander G., et al. "Natural speech reveals the semantic maps that tile human cerebral cortex." Nature 532.7600 (2016): 453-458.

"Somatotopic Embeddings" in our Brain

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007

Deep neural networks: To be, or not to be? That is the question.

CBOW, SkipGram (word2vec)

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013

Hierarchical Softmax and Negative Contrastive Estimation

• HS

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \operatorname{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

NCE

$$\log \sigma(v'_{w_O}^{\mathsf{T}} v_{w_I}) + \sum_{i=1}^k \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_{w_i}^{\mathsf{T}} v_{w_I}) \right]$$

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013

Tricks in Training Word Embeddings

- The # of negative samples?
 - The more, the better.
- The distribution from which negative samples are generated? Should negative samples be close to positive samples?
 - The closer, the better.

Full softmax vs. NCE vs. HS vs. hinge loss?

Outline

- Preliminary
 - Word embeddings
 - Sequence-to-sequence generation
- Indifferentiability, solutions, and applications
- A case study in semantic parsing

Seq2Seq Networks

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural networks." NIPS. 2014

Feeding back the output

- Mode selection
- Potential chaotic behaviors

Attention Mechanisms

Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine translation by jointly learning to align and translate." ICLR, 2014.

Context Vector

The context vector ${m c}$ is a combination of the input sequence's states ${m c} = \sum_i \alpha_i {m c}_i$

where the coefficient α_i is related to

- The local context $oldsymbol{c}_i$, and
- The last output state $oldsymbol{h}_{t-1}$
- α_i is normalized

$$\alpha_i = \frac{\exp{\{\tilde{\alpha}_i\}}}{\sum_j \exp{\{\tilde{\alpha}_j\}}}$$
 $\tilde{\alpha}_i = W[\boldsymbol{h}_{t-1}; \boldsymbol{c}_i]$

Attention as Alignment

Training

Step-by-step training

Indifferentiability

