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 One of the most fundamental problems in NLP.

« Given a corpus w=w.w,...w, the goal is to maximize p(w)
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« Given a corpus w=w.w,...w, the goal is to maximize p(w)

 Philosophical discussion: Does “probability of a
corpus/sentence” make sense?

— Recognize speech
— Wreck a nice beach

o Allin all, NLP (especially publishing in NLP) is pragmatic.
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Decomposition of the Joint probability

° p(W)= p(W1)p(W1|W2)p(W3|W1W2) p(Wt|W1W2"'Wt-1)

Minor question:

« Can we decompose any probabilistic distribution into this
form? Yes.

* |s it necessary to decompose a probabilistic distribution into
this form? No.

Lili Mou, Yiping Song, Rui Yan, Ge Li, Lu Zhang, Zhi Jin. "Sequence to backward and forward
sequences: A content-introducing approach to generative short-text conversation." In COLING,
2016.



Markov Assumption

o« P(W)=p(w,)p(W,Iw,)p(W,lw,w,) ... p(wiw,w,..w, )

=~ p(W1)p(W1|W2)p(W3|W2) p(thw’H)

» A word Is dependent only on its previous n-1 words and
iIndependent of its position,

|.e., provided with the previous n-1 words, the current word is
independent of other random variables.

p(’lﬂ) ~ H:? 1}'} (“f‘wt n—{—l)



Multinomial Estimate

« Maximum likelihood estimation for a multinomial distribution is merely
counting.

e Problems

— #para grows exp. w.r.t. n

— Even for very small n (e.g., 2 or 3), we come across severe data sparsity
because of the Zipf distribution



Parameterizing LMs with Neural Networks

 Each word is mapped to a real-valued vector, called
embeddings.

 Neural layers capture context information (typically
previous words).

 The probability p(wl-) is predicted by a softmax layer.



Feed-Forward Language Model
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Recurrent Neural Language Model

* RNN keeps one or a few hidden states

 The hidden states change at each time step according to
the input

O N O h; = RNN(z;, hs_1)
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Mikolov T, Karafiat M, Burget L, Cernocky J, Khudanpur S. Recurrent neural network based language model. In
INTERSPEECH, 2010.



Complexity Concerns

* Time complexity

— Hierarchical softmax [1]

— Negative sampling: Hinge loss [2], Noisy contrastive estimation [3]
* Memory complexity

— Compressing LM [4]
* Model complexity

— Shallow neural networks are still too “deep.”
- CBOW, SkipGram [3]

[1] Mnih A, Hinton GE. A scalable hierarchical distributed language model. NIPS, 2009.

[2] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language
processing (almost) from scratch. JMLR, 2011.

[3] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781. 2013

[4] Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, Zhi Jin. "Compressing neural language models by
sparse word representations." In ACL, 2016.



The Role of Word Embeddings?

» Word embeddings are essentially a connectional weight
matrix, whose input is a one-hot vector.

 Implementing by a look-up table is much faster than
matrix multiplication.

e Each column of the matrix corresponds to a word.
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How can we use word embeddings?

« Embeddings demonstrate the internal structures of words

— Relation represented by vector offset
Hmanﬂ _ “WOman” — “kingﬂ _ “queen”
— Word similarity

« Embeddings can serve as the initialization of almost every
supervised task

— A way of pretraining
- N.B.: may not be useful when the training set is large enough



Word Embeddings in our Brain
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Huth, Alexander G., et al. "Natural speech reveals the semantic
maps that tile human cerebral cortex.” Nature 532.7600 (2016):
453-458.



“Somatotopic Embeddings” in our Brain

FIGURE 12.18

A somatotopic map of the body surface
onto primary somatosensory cortex.
This map is a cross section through the post-
central gyrus (shown at top). Meurons in each
area are most responcve to the parts of the
body illustrated above them. (Source: Adapted
from Perfield and Rasmussen, 1951)

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007
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FIGURE 12.19
The homunculus.

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007



Deep neural networks:
To be, or not to be? That is the question.



CBOW, SkipGram (word2vec)
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[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781. 2013



Hierarchical Softmax and Negative
Contrastive Estimation
. HS

L{w)—1

(wlwr) = o ( n(w,j+ 1) = ch(n(w, j))] - f“[u i) Tf.-'wj,)
g=1

* NCE

|El.'
- 5
].(.'g l!r.T{ ul“'“,{} '-”E.I"_[ } -ll_ Z E“'-.E“"Frl. '[“1:] []J-}g l:jrli - Ir!:!"‘ T!“‘f :Ij|

=]

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781. 2013



Tricks in Training Word Embeddings

 The # of negative samples?
— The more, the better.

e The distribution from which negative samples are
generated? Should negative samples be close to positive
samples?

— The closer, the better.

o Full softmax vs. NCE vs. HS vs. hinge loss?
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Seq2Seq Networks

Sutskever, llya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning
with neural networks." NIPS. 2014
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Feeding back the output

 Mode selection

e Potential chaotic behaviors
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Bahdanau, Dzmitry, Kyunghyun Cho, and Yoshua Bengio. "Neural machine
translation by jointly learning to align and translate." ICLR, 2014.



Context Vector

The context vector ¢ is a combination of the input
sequence's states ¢ — Z o, C;

where the coefficient «; is related to

— The local context ¢; , and
— The last output state ;1

-« Is normalized

- explay) _ |
YT Sewtay = Wihesed




Attention as Alignment




Training

 Step-by-step training
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Indifferentiability
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