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* A case study in semantic parsing



The Curse of Indifferentiability

 Characters are discrete!
 Words are discrete!

» Phrases are discrete!

» Sentences are discrete!

 Paragraphs are discrete!
* All symbols are discrete!

 Word embeddings are continuous but are nothing!
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Indifferentiability

Risk (e.g., BLEU)
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Indifferentiability

e Input: word embeddings ©@
« Qutput; argmax p(word)
e Risk: a function of output
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Solution: Attempt #1

Classification of a particular word

=> Regression of word embeddings



Solution: Attempt #1

Classification of a particular word

=> Regression of word embeddings

« Total failure (but why?)



Solution: Attempt #2

« Attention (weighted sum)

: 7
o
.




Solution: Attempt #3

 Reinforcement learning (Trial-and-error)

- Sample an action (sequence)
— See what the reward is



REINFORCE o herchueo el Seuar ol Traiing i

* Define an external cost function on a generated sequence
 Generate words by sampling
 Take the derivative of generated samples
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Caveats

« REINFORCE may be extremely difficult to train

— Hard to get started
— Poor local optima
— Sensitive to hyperparameters

e Supervised pretraining



Solution: Attempt #4

e Gumble softmax

- Sample from a class distribution

z = one_hot (ﬂrg max [g; + log m])

where | _ _ log(—log(u))

— Softmax approximation

. — __exp((log(m) + gi)/7)
>y exp((log(m;) + g;)/7)

Jang, Eric, Shixiang Gu, and Ben Poole. "Categorical
Reparameterization with Gumbel-Softmax." ICLR, 2017.



Solution: Attempt #4

* Interpolation between onehot and uniform (with class
distribution information)

Categorical 7= 10.0
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Application: Sequence-Level Objective

» REINFORCE towards BLEU

 Annealing

- For 1..T words
— Supervised training: 1..t
- RL:t+1.T



Results

TASK XENT | DAD | E2E | MIXER
summarization 13.01 12.18 | 12.78 | 16.22
translation 17.74 | 20.12 | 17.77 | 20.73
image captioning || 27.8 28.16 | 26.42 | 29.16

Shen, Shigi, Yong Cheng, Zhongjun He, Wei He, Hua Wu, Maosong Sun, and Yang Liu.
"Minimum risk training for neural machine translation." ACL, 2016.

System Training | MTO06 | MTO2 MTO03 MTO04 MTO5 MTOS8
MOSES MERT | 32.74 | 3249 3240 3338 3020 25.28
T V. MLE 3070 | 3513 33773 34538 | 3L16 23357
MRT 3734 | 4036 4093 4137 3881 29.23




Application: SeqGAN

Yu, Lantao, Weinan Zhang, Jun Wang, and Yong Yu. "Seqgan: sequence generative
adversarial nets with policy gradient." In AAAI. 2017.



Generative Adversarial Network

» Two agents:

— Generative model: Generate new samples that are as similar
as the data

— Discriminative model: Distinguish samples in disguise

« Each agent takes a step in turn



Objective of GAN

minmax V(D, G) = Eg @) l0g D(@)] + Ezp. (2)[log(l — D(G(2)))]

 G(2): A generated sample from distribution z

 D(x) = Estimated (by D) prob. that x is a real data sample
— D(x)=1: D regards x as a training sample w.p.1
— D(x)=0: D regards x as a generative sample w.p.1



Objective of GAN

1‘1}1}1 max V(D,G) = Egrpyua(z) log D(z)] + E, ). () l0g(1 — D(G(2)))]

Algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z'1), ... z(")} from noise prior p,(z).
e Sample minibatch of m examples {x*), ... 2(™)} from data generating distribution
pdﬂtﬂ{£}=

e Update the discriminator by ascending its stochastic gradient:

max V vmii [lngﬂ (:c':”) + log (1 k) ((; (ziil))ﬂ '

D “m 4
1=1
end for
e Sample minibatch of m noise samples {z!!) ... 2"} from noise prior p,(z).

e Update the generator by descending its stochastic gradient:

Tri

vﬂﬂi Z; log (1- D (G (=)

end for



Curse of Indifferentiability

1‘1}1}1 max V(D,G) = Egrpyua(z) log D(z)] + E, ). () l0g(1 — D(G(2)))]

Algorithm

for number of training iterations do
for k steps do

e Sample minibatch of m noise samples {z1), ... z{™

)} from noise prior p,(z).
e Sample minibatch of m examples {x*), ... 2(™)} from data generating distribution

pdﬂtﬂ{ﬂ:}*
e Update the discriminator by ascending its stochastic gradient:

max V vmii llugD (:c':”) + log (1 k) ((; (ziil))ﬂ '

D “m 4
1=1
end for
e Sample minibatch of m noise samples {z!!) ... 2"} from noise prior p,(z).

e Update the generator by descending its stochastic gradient:

Vip Z g (1 - D)%G (29))).

end for



Solution

» REINFORCE! Table 2: Chinese poem generation performance comparison.

Algorithm | Human score | p-value | BLEU-2 | p-value

MLE 0.4163 0.6670 6
SeqGAN | 05356 | 00034 | g73g9 | <10
Real data 0.6011 0.746

Table 3: Obama political speech generation performance.
Algorithm | BLEU-3 | p-value | BLEU-4 | p-value

MLE 0.519 _6 0.416

SeqGAN ‘ 0.556 ‘ <107 | o427 ‘“‘ﬂm”

Table 4: Music generation performance comparison.
Algorithm | BLEU-4 | p-value | MSE | p-value
MLE 0.9210 _6 | 22.38
SeqGAN ‘ 0.9406 ‘ <107 | 30,62 ‘ 00034

* Does SeqGAN provide a more powerful density estimator?



Application; Rationale neural predictions
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Lei, Tao, Regina Barzilay, and Tommi Jaakkola.
"Rationalizing neural predictions.”" EMNLP, 2016.



Objective

e L(z,x,y) = |lenc(z,x) — y|5

. Q@) =Mzl + 22 Y |z — 2|

© cost(z,x,y) = L(z,%,y) + Qz)



Training

» REINFORCE!



Results

Red: appearance
Blue: Smell
Green: Palate

very dark beer . pours a nice finger and a half of creamy foam and stays throughout the beer . smells of coffee and roasted malt . has a

major coffee-like taste with hints of chocolate . if you like black coffee , you will love this porter . creamy smooth mouthfeel and

definitely gets smoother on the palate once it warms . it 's an ok porter but i feel there are much better one 's out there .
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