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« We may also refer interested audience to Jurafsky & Martin's

book, Speech and Language Processing: An Introduction to
Natural Language Processing, Computational Linguistics, and
Speech Recognition (Second Edition)
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The parsing problem
My favorite example: Onion sentences [Pinker, 1994]

— The dog the stick the fire burned beat bit the cat.
— Ifif if it rains it pours | get depressed | should get help.
— That that that he left is apparent is clear is obvious.

The dog the stick the fire burned beat bit the cat.
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Context Free Grammar

A context-free grammar (CFG) is a 4-tuple G = (N, X, R, S) where:

e V is a finite set of non-terminal symbols.
e ) is a finite set of terminal symbols.

e R 1s a finite set of rules of the form X — Y7;Y5...Y,,,where X € N,n > 0,
andY; e (NUX)fori=1...n.

e S € N is a distinguished start symbol.

E.g., ¢ S: a sentence
« N: NP, VP, PP e >: a word
e R: 5S--> NP VP, NP--> N, N-->book



Parsing in PLP and NLP

 Parsing a program

— The syntax of a programming language guarantees no
ambiguity.

— It usually also guarantees an efficient (greedy) parsing
algorithm, e.g., LALR.

 Parsing a natural language sentence

— Ambiguity is usually the No. 1 concern.
- Many of possible results don't make sense (w/ low probability).



The man saw the dog

with the telescope.
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Probabilistic Context-Free Grammar
Definition 1 (PCFGs) A PCFG consists of:
1. A context-free grammar G = (N, X, S, R).
2. A parameter
gla — 3)

for each rule « — 3 € R. The parameter q(«c — [3) can be interpreted as
the conditional probabilty of choosing rule o« — (3 in a left-most derivation,
given that the non-terminal being expanded is «. For any X € N, we have
the constraint

Z gla — 3) =1

a—BeR:a=X

In addition we have q(a« — [3) = 0 for any o« — 3 € R.

« PCFG in a nutshell:
PCFG is nothing but a CFG with probability assigned to each rule.



S =35

y, = {sleeps, saw, man, woman, dog, telescope, the, with, in}

Example

N = {S, NP, VP, PP, DT, Vi, Vt, NN, IN}

=

S — NP VP | 1.0

YE = Yi 0.3

VP — Vit NP | 0S5
<TVP — VP PP | 02
"

NP — DT NN/ 08

<’NP\—;- NP PP | 0.2

PP — IN NP | 1.0

» saw with a telescope v.s. dog with a

Vi — sleeps 1.0
Vt — saw 1.0
NN — man 0.1
NN — woman 0.1
NN — telescope | 0.3
NN — dog 0.5
DT — the 1.0
IN — with 0.6
IN — in 0.4
lefescope

« VP--> VP PP and NP — NP PP may have different
probabilities in general.




The probability of a parse tree

 Under very mild conditions

Given a parse-tree t € T containing rules oy — 31,09 — (o9, ..., 0, — O,
the probability of t under the PCFG is

T

pWZHﬂMﬁM

i=1
S
e /\
Example & =
il |
DT NN Vi

. |
the dog sleeps

then we have

p(t) = q(S — NP VP) x ¢(NP — DT NN) x ¢(DT — the) x g(NN — dog) X
q(‘JF — ‘Ji) ¥ (;(Vi o sleeps)



Learning/Paramter Estimation

o Maximum likelihood estimation
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Prediction/Decoding

 The parsing problem is to find a parse tree that

arg max 7
g 1o (S)p( :



Preprocessing

Definition 2 (Chomsky Normal Form) A context-free grammar G = (N, ¥, R, S)
is in Chomsky form if each rule « — 3 € R takes one of the two following forms:

o X — Y Yowhere X € N,Y; € N,Y, € N.

o X — Y where X € N,Y € 3.

e Binarize



The CKY Algorithm

The Cocke-Younger—-Kasami algorithm

Dynamic programming

Pi(1, j, X): The max. probability of non-terminal symbol X
spanning words from i to j.

Initialization:

(2,1, X)

T

<

10 X | =" THAX t
(2, 4, X) tgmx)p()

" Q(X %Ta) it X —-x;, € R
0 otherwise




e Recursion:

7,5, X) = max  (q(X —YZ) x 7(i,5,Y) x 7(s +1,j, Z))
XY ZER,
s€{i...(1—1)}
back-pointer
bp(i,7,X) =arg max (¢q(X =YZ)xn(i,sY)Xx7w(s+1,5,72))

X—YZeR,
se{i..(j—1)}

e Termination:

w(1,n, 8) = maxier (s p(t
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Weakness of PCFG

o Lack of Sensitivity to Lexical Information

— The man saw the dog with a telescope
— The man saw the girl with a telescope

The only difference lies in N-> dog or N->girl, which is a constant
given either of the above sentences. However, a girl is more likely

to wield a telescope than a dog.

NP
* Lack of Sensitivity to Structural Preferences ..
NP

FP

|
NN IN




Lexicalization
 Tag each abstract constituent with a word from its child

nodes (by heuristics) 2
« S->NP VP, NP/\W
— D”N /\
where  refers | | ‘i" bid

A
questioned DT NN

to the headword | |

the witness

the lawyer

S(questioned)

T

NP(lawyer) W{que stioned)

o S|de product DT(@WYE” /\

. | | Vt(questioned) NP(witness)
dependency relations wme  tawyer [
questioned DT(the) NN(witness)
| |

the witness



Rules to Tag the Headword

If the rule contains NN, NNS, or NNP:
Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP
Else If the rule contains a JJ: Choose the rightmost JJ
Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

Figure 6: Example of a set of rules that identifies the head of any rule whose left-
hand-side 1s an NP.



Learning/Parameter Estimation

e E.g., q(S(examined) — NP(lawyer) VP(examined))

o Maximum likelihood estimation

e Smoothing



Prediction/Decoding

 Dynamic programming

* Pi(i, ], h, X): The max. probability of constituent X with
nead h, spanning over word i to |.

e |nitialization:

i

q(X(z;) = x;) fX(x;) >z, €R

bty A = l
?T(F.?..F. ]' ‘ 0 otherwise

\



e Recursion:

Fors=h...(j—1),form = (s+1)...7, for X(xp) =1 Y(zp)Z(x:m)
R,

(E’l) P = QKX[IH@Y(IH}Z(ETH}) X TT[:"EI'-' S, h'.' Y:] x TT(S + ]-'.l.j: m, Z)
(b) 1f p > 7(i, j, h, X),
m(i, j,h, X) =p

bp(i, j, h, X) = (s,m,Y, Z)

Fors=i...(h—1),form=1i...s8 for X{z;) =2 Y(z,)Z(zs) € R,

(a) p=gq(X T;E@Y (Tm) Z(zp)) X w(i,s,m,Y) xw(s+1,5,h, Z)
b) Ifp > = (3,5, h, X),
it 10, X) =p

bali a0, X) = (e, ¥, Z)
 The headword may come from either the left child or the right child



e Termination

X* h*) = X.h) x m(1,n,h, X
(X bty =g o (X, h) x (L, m by X)
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Recursive Deep Models for Discourse Parsing

e\]\s\ Jiwei Li', Rumeng Li* and Eduard Hovy®
LComputer Science Department, Stanford University, Stanford, CA 94305, USA
2School of EECS, Peking University, Beijing 100871, P.R. China
3Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
jiweil @stanford.edu alicerumeng @foxmail.com  ehovy@andrew.cmu.edu

o Dataset: Rhetorical Structure Theory Discourse Treebank
(RST-DT)
« 385 documents, 347 for training (5-fold), 49 for testing

 Each doc represented as a tree

— Elementary Discourse Units (EDUs): Clauses
— Relations: hypotactic v.s. paratactic



« EDU modeling: Standard RAE e T \Es
« Discourse parsing: f"'_i'.;
e 2-step strategy e, e,

— Binary classifier: To determine whether two adjacent text units should be

merged to form a new subtree
ihimr}'(f’-l ez) = 1, IIEI:sir.l.ary('5:-’-:% es) = 1,
fhlI‘l"lI‘}'(E 2, €3 0, thinary(f-’-!h eg) = 0,

fhlmry(f 5 €6

)
L‘{:’:"“i’ = f(Gbinary * [he;, hf ] + bbinary )

_ o] ;
p[thinar}'(‘:-’--.é: e;) = l] =~ g(Ubimﬂ"ﬂ'L{::T;;j —I_Ehi“t"})

— Multi-class classifier: To determine which relation



Learning/Parameter Estimation
e Whether two EDUs have some relation?

J(Hhinmy) = Z Jhinﬁr}'(ﬁ’--é; E’-_';')

(ei,ej)e{binary}

_|‘thnary' Z {’ﬁ

. e E'hmar}-'
 And what relation?

J(emulli) _ Z Jmulli (Ei: Ej)

(ei,e;)e{multi}

+ Qmui -y 07

l':';"E':;:'Il'mul'[i



Inference/Decoding

 Choose the parse tree with max. prob.
 Dynamic programming, keeping 10 options at each time

Prlr, I, j]: The max. prob. that (discourse) relation r spans over
EDUs ito].
Prr,i, j| =max,, ., xPr(r1,i, k| - Pr|ra, k, j]
Xp(tbinar}f(ﬁ[i,kjaE’f[kjj]) =1)
XP(T(E’[:&,k]a ﬂ[k,j]) = 1)
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