Parsing and Discourse Parsing

Lili Mou doublepower.mou@gmail.com

Acknowledgments

The material basically follows Michael Collins' open course,
 Natural Language Processing, @Coursera, with extensive notes available at

http://www.cs.columbia.edu/~mcollins/

 We may also refer interested audience to Jurafsky & Martin's book, Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition (Second Edition)

Road Map

- The Parsing Problem
- Context-Free Grammar
- Probabilistic Context Free Grammar
- CKY Algorithm
- Lexicalized PCFG
- Discourse Parsing (Next Week)

The parsing problem

- My favorite example: Onion sentences [Pinker, 1994]
 - The dog the stick the fire burned beat bit the cat.
 - If if if it rains it pours I get depressed I should get help.
 - That that the left is apparent is clear is obvious.

The dog the stick the fire burned beat bit the cat.

Road Map

- The Parsing Problem
- Context-Free Grammar
- Probabilistic Context-Free Grammar
- CKY Algorithm
- Lexicalized PCFG
- Discourse Parsing (Next Week)

Context Free Grammar

A context-free grammar (CFG) is a 4-tuple $G = (N, \Sigma, R, S)$ where:

- N is a finite set of non-terminal symbols.
- Σ is a finite set of terminal symbols.
- R is a finite set of rules of the form X → Y₁Y₂...Y_n, where X ∈ N, n ≥ 0, and Y_i ∈ (N ∪ Σ) for i = 1...n.
- $S \in N$ is a distinguished start symbol.
- E.g., S: a sentence
 - N: NP, VP, PP ∑: a word
 - R: S--> NP VP, NP--> N, N-->book

Parsing in PLP and NLP

- Parsing a program
 - The syntax of a programming language guarantees no ambiguity.
 - It usually also guarantees an efficient (greedy) parsing algorithm, e.g., LALR.
- Parsing a natural language sentence
 - Ambiguity is usually the No. 1 concern.
 - Many of possible results don't make sense (w/ low probability).

The man saw the dog with the telescope.

Road Map

- The Parsing Problem
- Context-Free Grammar
- Probabilistic Context-Free Grammar
- CKY Algorithm
- Lexicalized PCFG
- Discourse Parsing (Next Week)

Probabilistic Context-Free Grammar

Definition 1 (PCFGs) A PCFG consists of:

- 1. A context-free grammar $G = (N, \Sigma, S, R)$.
- 2. A parameter

$$q(\alpha \to \beta)$$

for each rule $\alpha \to \beta \in R$. The parameter $q(\alpha \to \beta)$ can be interpreted as the conditional probabilty of choosing rule $\alpha \to \beta$ in a left-most derivation, given that the non-terminal being expanded is α . For any $X \in N$, we have the constraint

$$\sum_{\alpha \to \beta \in R: \alpha = X} q(\alpha \to \beta) = 1$$

In addition we have $q(\alpha \to \beta) \ge 0$ for any $\alpha \to \beta \in R$.

PCFG in a nutshell:

PCFG is nothing but a CFG with probability assigned to each rule.

Example

```
N = \{S, NP, VP, PP, DT, Vi, Vt, NN, IN\}

S = S

\Sigma = \{\text{sleeps, saw, man, woman, dog, telescope, the, with, in}\}
```

R, q	=					
	S	\rightarrow	NP	VP	1.0	
	VP	\rightarrow	Vi		0.3	
1	VP	\rightarrow	Vt	NP	0.5	
4	VP	\rightarrow	VP	PP	0.2	
1	NP	\rightarrow	DT	NN	0.8	ı
4	NP	\longrightarrow	NP	PP	0.2	
	PP	\rightarrow	IN	NP	1.0	'

Vi	\rightarrow	sleeps	1.0
Vt	\rightarrow	saw	1.0
NN	\rightarrow	man	0.1
NN	\rightarrow	woman	0.1
NN	\rightarrow	telescope	0.3
NN	\rightarrow	dog	0.5
DT	\rightarrow	the	1.0
IN	\rightarrow	with	0.6
IN	\rightarrow	in	0.4

- saw with a telescope v.s. dog with a telescope
- VP--> VP PP and NP → NP PP may have different probabilities in general.

The probability of a parse tree

Under very mild conditions

Given a parse-tree $t \in T_G$ containing rules $\alpha_1 \to \beta_1, \alpha_2 \to \beta_2, \dots, \alpha_n \to \beta_n$, the probability of t under the PCFG is

$$p(t) = \prod_{i=1}^{n} q(\alpha_i \to \beta_i)$$

Example

then we have

$$\begin{array}{ll} p(t) &=& q(\mathtt{S} \to \mathtt{NP} \ \mathtt{VP}) \times q(\mathtt{NP} \to \mathtt{DT} \ \mathtt{NN}) \times q(\mathtt{DT} \to \mathtt{the}) \times q(\mathtt{NN} \to \mathtt{dog}) \times \\ & q(\mathtt{VP} \to \mathtt{Vi}) \times q(\mathtt{Vi} \to \mathtt{sleeps}) \end{array}$$

Learning/Paramter Estimation

Maximum likelihood estimation

Road Map

- The Parsing Problem
- Context-Free Grammar
- Probabilistic Context-Free Grammar
- CKY Algorithm
- Lexicalized PCFG
- Discourse Parsing (Next Week)

Prediction/Decoding

The parsing problem is to find a parse tree that

$$\arg \max_{t \in T_G(s)} p(t)$$

Preprocessing

Definition 2 (Chomsky Normal Form) A context-free grammar $G = (N, \Sigma, R, S)$ is in Chomsky form if each rule $\alpha \to \beta \in R$ takes one of the two following forms:

- $X \to Y_1Y_2$ where $X \in N, Y_1 \in N, Y_2 \in N$.
- $X \to Y$ where $X \in N$, $Y \in \Sigma$.

Binarize

The CKY Algorithm

- The Cocke–Younger–Kasami algorithm
- Dynamic programming
- Pi(i, j, X): The max. probability of non-terminal symbol X spanning words from i to j.

$$\pi(i, j, X) = \max_{t \in \mathcal{T}(i, j, X)} p(t)$$

Initialization:

$$\pi(i, i, X) = \begin{cases} q(X \to x_i) & \text{if } X \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Recursion:

$$\pi(i,j,X) = \max_{\substack{X \rightarrow YZ \in R, \\ s \in \{i...(j-1)\}}} \left(q(X \rightarrow YZ) \times \pi(i,s,Y) \times \pi(s+1,j,Z) \right)$$

back-pointer

$$bp(i, j, X) = \arg \max_{\substack{X \to YZ \in R, \\ s \in \{i...(j-1)\}}} (q(X \to YZ) \times \pi(i, s, Y) \times \pi(s+1, j, Z))$$

• Termination:

$$\pi(1, n, S) = \max_{t \in \mathcal{T}(s)} p(t)$$

Road Map

- The Parsing Problem
- Context-Free Grammar
- Probabilistic Context-Free Grammar
- CKY Algorithm
- Lexicalized PCFG
- Discourse Parsing (Next Week)

Weakness of PCFG

- Lack of Sensitivity to Lexical Information
 - The man saw the dog with a telescope
 - The man saw the girl with a telescope

The only difference lies in N-> dog or N->girl, which is a constant given either of the above sentences. However, a girl is more likely to wield a telescope than a dog.

Lack of Sensitivity to Structural Preferences

Lexicalization

Tag each abstract constituent with a word from its child

nodes (by heuristics)

S--> NP VP,
 where refers
 to the headword

Side product:
 dependency relations

Rules to Tag the Headword

If the rule contains NN, NNS, or NNP: Choose the rightmost NN, NNS, or NNP

Else If the rule contains an NP: Choose the leftmost NP

Else If the rule contains a JJ: Choose the rightmost JJ

Else If the rule contains a CD: Choose the rightmost CD

Else Choose the rightmost child

Figure 6: Example of a set of rules that identifies the head of any rule whose lefthand-side is an NP.

Learning/Parameter Estimation

E.g., q(S(examined) → NP(lawyer) VP(examined))

- Maximum likelihood estimation
- Smoothing

Prediction/Decoding

- Dynamic programming
- Pi(i, j, h, X): The max. probability of constituent X with head h, spanning over word i to j.

Initialization:

$$\pi(i,i,i,X) = \begin{cases} q(X(x_i) \to x_i) & \text{if } X(x_i) \to x_i \in R \\ 0 & \text{otherwise} \end{cases}$$

Recursion:

For
$$s = h \dots (j-1)$$
, for $m = (s+1) \dots j$, for $X(x_h) \rightarrow_1 Y(x_h)Z(x_m) + R$,

(a)
$$p=q(X(x_h) \xrightarrow{} Y(x_h) Z(x_m)) \times \pi(i,s,h,Y) \times \pi(s+1,j,m,Z)$$

(b) If $p>\pi(i,j,h,X)$,

$$\pi(i,j,h,X) = p$$

$$bp(i, j, h, X) = \langle s, m, Y, Z \rangle$$

For $s = i \dots (h-1)$, for $m = i \dots s$, for $X(x_h) \to_2 Y(x_m)Z(x_h) \in R$,

(a)
$$p = q(X(x_h) \rightarrow_2 Y(x_m)Z(x_h)) \times \pi(i, s, m, Y) \times \pi(s+1, j, h, Z)$$

(b) If $p > \pi(i, j, h, X)$,

$$\pi(i, j, h, X) = p$$

$$bp(i, j, h, X) = \langle s, m, Y, Z \rangle$$

The headword may come from either the left child or the right child

Termination

$$(X^*, h^*) = \arg \max_{S \in N, h \in \{1...n\}} \gamma(X, h) \times \pi(1, n, h, X)$$

Road Map

- The Parsing Problem
- Context-Free Grammar
- Probabilistic Context Free Grammar
- CKY Algorithm
- Lexicalized PCFG
- Discourse Parsing

Recursive Deep Models for Discourse Parsing

Jiwei Li¹, Rumeng Li² and Eduard Hovy³

¹Computer Science Department, Stanford University, Stanford, CA 94305, USA ²School of EECS, Peking University, Beijing 100871, P.R. China ³Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA jiweil@stanford.edu alicerumeng@foxmail.com ehovy@andrew.cmu.edu

- Dataset: Rhetorical Structure Theory Discourse Treebank (RST-DT)
- 385 documents, 347 for training (5-fold), 49 for testing
- Each doc represented as a tree
 - Elementary Discourse Units (EDUs): Clauses
 - Relations: hypotactic v.s. paratactic

- EDU modeling: Standard RAE
- Discourse parsing:
- 2-step strategy

 Binary classifier: To determine whether two adjacent text units should be merged to form a new subtree

$$\begin{split} t_{\text{binary}}(e_1, e_2) &= 1, \ t_{\text{binary}}(e_3, e_4) = 1, \\ t_{\text{binary}}(e_2, e_3) &= 0, \ t_{\text{binary}}(e_3, e_6) = 0, \\ t_{\text{binary}}(e_5, e_6) &= 1 \\ L_{(e_i, e_j)}^{\text{binary}} &= f(G_{\text{binary}} * [h_{e_i}, h_{e_j}] + b_{\text{binary}}) \\ p[t_{\text{binary}}(e_i, e_j) &= 1] &= g(U_{binary} \cdot L_{(e_i, e_j)}^{\text{binary}} + b_{\text{binary}}^*) \end{split}$$

Multi-class classifier: To determine which relation

Learning/Parameter Estimation

Whether two EDUs have some relation?

$$J(\Theta_{\text{binary}}) = \sum_{(e_i, e_j) \in \{\text{binary}\}} J_{\text{binary}}(e_i, e_j) + Q_{\text{binary}} \cdot \sum \theta^2$$

And what relation?

$$J(\Theta_{\text{multi}}) = \sum_{(e_i, e_j) \in \{\text{multi}\}} J_{\text{multi}}(e_i, e_j) + Q_{\text{multi}} \cdot \sum_{\theta \in \Theta_{\text{multi}}} \theta^2$$

Inference/Decoding

- Choose the parse tree with max. prob.
- Dynamic programming, keeping 10 options at each time
 Pr[r, i, j]: The max. prob. that (discourse) relation r spans over EDUs i to j.

$$\begin{split} Pr[r,i,j] = & \max_{r_1,r_2,k} Pr[r_1,i,k] \cdot Pr[r_2,k,j] \\ & \times P(t_{\text{binary}}(e_{[i,k]},e_{[k,j]}) = 1) \\ & \times P(r(e_{[i,k]},e_{[k,j]}) = 1) \end{split}$$