Deep Learning for Program Analysis

Lili Mou
January, 2016

Outline
Introduction

Background
Deep Neural Networks
Real-Valued Representation Learning

Our Models
Building Program Vector Representations for Deep Learning
TBCNN: A Tree-based Convolutional Neural Network for Programming Language
Processing

Conclusion and Discussion
Philosophy of Science: Also Belief

References

Introduction

Lili Mou | SEKE Team 3/47

Deep Neural Networks

o Widely applied machine learning architectures
speech recognition
computer vision

natural language processing
e Capable of capturing highly complicated (non-linear) features efficiently

e Very little human engineering and prior knowledge is required

people specify the model; machines learn details

Lili Mou | SEKE Team 4/47

Statistical Program Analysis

[Hindle et al., 2012] compares programming languages to natural languages, and
conclude that programs also have rich statistical properties

e Difficult for human to capture

e Justifying learning-based approaches

However, no deep learning approaches have been proposed or applied in the field of program
analysis.

Lili Mou | SEKE Team 5/47

Contributions of Our Work

e We are the first to apply deep learning to program analysis

e We propose a real-valued vector representation learning based on abstract syntax trees
[Mou et al., 2014b]

e We propose a tree-based convolutional neural network to capture tree structural infor-
mation [Mou et al., 2014a]

Lili Mou | SEKE Team 6/47

Background

Lili Mou | SEKE Team 7/47

Deep Neural Networks

Lili Mou | SEKE Team 8/47

A Single Layer of Neuron

Model:
y=f(W-x+b)
Output
y=f(Wx+b)
w
Input =
Training:
Gradient descent W «+ W — ag—V{,, b+ b— a%
Limitation:

Linear separation

Lili Mou | SEKE Team 9/47

Multi-Layer Neural Networks

Model: Stacking multiple layers of neurons

Output layer A Higher level
o (abstract features)

Hidden layers

-~ Lower level
Input layer * (local features)

Training: Gradient descent with back propagation

!
Lili Mou | SEKE Team 10/47

Multi-Layer Neural Networks

Model power:

e 2 layers for any Boolean or continuous function
e 3 layers for any function

Limitation:

o Inefficient (in terms of representation)
The number of hidden units may grow exponentially to capture highly complicated
features
e Poor generalization
Too many parameters = High VC dimension = Poor generalization

Lili Mou | SEKE Team 11/47

Deep Neural Networks

e Efficient to capture highly complicated features
Features are organized hierarchically, local features at lower layers and abstract
features at higher layers
e Extremely difficult to train
— Long term dependency (gradient would either vanish or blow up)

— Local optima far from optimal

Lili Mou | SEKE Team 12/47

Deep Learning

Successful pretraining methods extract features unsupervisedly

e Restricted Boltzmann Machine

Minimize the energy

e Autoencoder

Minimize reconstruction error
2-stage strategy

1. Pretraining to initialize the weights meaningfully

2. Fine-tuning with back propagation so that the weights are specific to a problem

Lili Mou | SEKE Team 13/47

Real-Valued Representation Learning

Lili Mou | SEKE Team 14/47

Discrete Variables

Words are discrete!
They can't be fed to neural networks directly. (Recall W - x)

Word 100 is 100x larger than Word 17

Lili Mou | SEKE Team 15/47

Real-Valued Representations

The basic idea:

e Map each word to a vector in R*

e Each dimension capturing some (anonymous) feature

Lili Mou | SEKE Team 16/47

Learning Vector Representations

e [Bengio et al., 2003], maximizing the conditional probability of the n-th word given
n — 1 words

e [Mnih and Hinton, 2007], maximizing the energy defined on neighboring words

e [Morin and Bengio, 2005, Mnih and Hinton, 2009], hierarchical architectures to reduce
the computational cost

e [Collobert et al., 2011], negative sampling

e [Mikolov et al., 2010], recurrent neural network

Lili Mou | SEKE Team 17/47

Neural Language Modeling

The goal of language models: maximizing the joint probability of a corpus

i-th output = P(w; = 7| context)
entire vocabulary b
[erxx) . vee)
7 74 ~
most| computation here %
\

1

" hidden layer

‘
I E X)
v

)
'
'
'
1

: g
feature veetor.
Wt ~ Cwia)
s
Table I~
1ook—up
me across words
index for Wr i1 index for ; 2 index for w;_y

18/47

Lili Mou | SEKE Team

Our Models

Lili Mou | SEKE Team 19/47

Building Program Vector Representations for Deep Learning

Lili Mou | SEKE Team 20/47

The Granularities of Program Analysis

e Characterize level?
e Token level?
e Nodes in Abstract Syntax Tree (AST)?

e Statement level? or higher?

Lili Mou | SEKE Team

21/47

The Abstract Syntax Tree

double doubles(double doublee){
return 2 * doublee;

}
FuncDef
Decl Compound
FuncDecl Return
ParameterList ~ TypeDecl Bina| Op

Decl IdentifierType Constant ID
TypeDecl

IdentifierType

Lili Mou | SEKE Team 22/47

Formalization

The goal: To code parent’s representation by its children's via a single layer of neurons

n
veo(p) & tanh [> ;Wi - veo(c;) + b

i=1

leaves under ¢; -
where [; = u are the coefficients for W's.

F#leaves under p

Lili Mou | SEKE Team 23/47

Negative Sampling

Define distance (Euclidean distance square)

2

n
d = ||vec(p) — tanh Z ;Wi -vec(c;) + b
i=1 2

Cost function
J(d®,dP) = max {o, A+d® - dﬁ”}

Training objective
PP (i) 4(4)
minimize Z](d ,de’)
T

Lili Mou | SEKE Team 24/47

Empirical Results

Examples of the nearest neighbor query results.

Query Results
Most Similar Most Dissimilar
ID BinaryOp, Constant, ArrayRef, Assignment, StructRef - - - PtrDecl, Compound, Root, Decl, TypeDecl
Constant ID, UnaryOp, StructRef, ArrayRef, Cast -+ - EnumeratorList, ExprList, If, FuncDef, Compound
BinaryOp | ArrayRef, Assignment, StructRef, UnaryOp, ID cee PtrDecl, Compound, FuncDecl, Decl, TypeDecl
ArrayRef BinaryOp, StructRef, UnaryOp, Assignment, Return cee Compound, PtrDecl, FuncDecl, Decl, TypeDecl
If For, Compound, Break, While, Case “e BinaryOp, TypeDecl, Constant, Decl, ID
For If, While, Case, Break, Struct “e BinaryOp, Constant, ID, TypeDecl, Decl
Break While, Case, Continue, Switch, InitList e BinaryOp, Constant, TypeDecl, Decl, ID
While Switch , Continue , Label , Goto S BinaryOp, Constant, Decl, TypeDecl, ID
FuncDecl ArrayDecl, PtrDecl, FuncDef, Typename, Root - -+ ArrayRef, FuncCall, IdentifierType, BinaryOp, ID
ArrayDecl FuncDecl, PtrDecl, Typename, FuncDef, While - -+ BinaryOp, Constant, FuncCall, IdentifierType, ID
PtrDecl FuncDecl, Typename, FuncDef, ArrayDecl “e FuncCall, ArrayRef, Constant, BinaryOp, ID

Lili Mou | SEKE Team 25/47

k-Means Clustering (k = 3)

Cluster

Sybmols

1

UnaryOp, FuncCall, Assignment, ExprList,
StructRef, BinaryOp, ID, Constant, ArrayRef

FuncDef, TypeDecl, FuncDecl, Compound,
ArrayDecl, PtrDecl, Decl, Root

Typedef, Struct, For, Union, CompoundLiteral,
TernaryOp, Label, InitList, IdentifierType,
Return, Enum, Break, DoWhile, Case,
DeclList, Default, While, Continue,
ParamList, Enumerator, Typename, Goto,
Cast, Switch, EmptyStatement,
EnumeratorList, If

Lili Mou | SEKE Team

26/47

Hierarchical Clustering

ArrayDecl
PtrDecl

Break

Constant

ID

ArrayRef

Lili Mou | SEKE Team 27/47

Performance in Supervised Classification

1. LE] TEES

0.9

Training error
S

0.8
e—e Pretrained
+ 4 Random Initial

0.7

ization

10 15 20 25 30 35 40
Epochs (iterations over all training samples)
(A) Learning curve of training

L (XXX EEXXX XXX EER XXX Y]

CV error
e
o &

o
©

10 15 20 25 30 35 40
Epochs (iterations over all training samples)
(B) Learning curve of CV

Lili Mou | SEKE Team 28/47

TBCNN: A Tree-based Convolutional Neural Network for
Programming Language Processing

Lili Mou | SEKE Team 29/47

Motivation

Programs and natural languages are different in that

e Natural languages contain more symbols (words)

e Programs contain more structure information

“The dog the stick the fire burned beat bit the cat.” [Pinker, 1994]

Lili Mou | SEKE Team 30/47

Architecture of TBCNN

softmax
— — — H
Vector representation

and coding Tree-based convolution 3-way pooling Hidden layer ~ Output layer

Lili Mou | SEKE Team 31/47

Coding Layers

P = Weomb1 - Vec(p)

+ Weomb2 - tanh (Z liWcode,i . VeC(:Di) + bcode)
i

Lili Mou | SEKE Team 32/47

Tree-based Convolution

n
y = tanh Z Weonv,i * @i + beonv

=1

’, SO e T
’ B . LN - P T
' 7 NN H
7’ s N -
L NN (cooo] [(0000] (@000O
. (0 e e] (e eel(e0ee) .
2 e - A A OV NN
oo oo
d A
D EY

Lili Mou | SEKE Team 33/47

3-Way Max Pooling

TOP

LOWER_LEFT LOWER_RIGHT

Lili Mou | SEKE Team 34/47

The “Continuous Binary Tree" Model

Wi = nOw® 4 Ow® 4 py)

Lili Mou | SEKE Team 35/47

Problem Definition

e POJ problems
e 2 groups, 4 problems in each groups

e Supervised multi-class classification
according to program functionalities

Lili Mou | SEKE Team 36/47

‘GRP. ‘ Method ‘ Train Err. |CV Err. | Test Err.

Random guess 75 75 75

LR 24.3 26.86 26.7

1 Linear SVM 24.89 27.51 28.48

RBF SVM 4.38 12.63 11.31

TBCNN 4.03 9.98 10.14
TBCNN-+BOW 3.86 8.37 8.53
Random guess 75 75 75

LR 16.86 18.04 18.84

9 Linear SVM 17.18 17.87 19.48
RBF SVM 0.27 8.21 8.86
TBCNN 0.48 5.31 4.98
TBCNN+BOW 0.54 3.70 3.70

Lili Mou | SEKE Team

37/47

Detecting Bubble Sort

e Data
109 source codes contain bubble sort
109 source codes do not contain sort

1:1 for developing and testing

e Training

Generate ~10000 mock data samples

e Results
Classifier Features Accuracy
Rand/majority - 50.0
RBF SVM Bag-of-words 62.3
RBF SVM Bag-of-trees 77.1
TBCNN Learned 89.1

Lili Mou | SEKE Team 38/47

Conclusion and Discussion

Lili Mou | SEKE Team 39/47

e Deep learning and representations learning background

e Building program vector representations

e Tree-based convolutional neural networks

Lili Mou | SEKE Team 40/47

Philosophy of Science: Also Belief

Lili Mou | SEKE Team 41/47

Computer Science

Is computer science science?

Is political science science?

Discovery v.s. Invention

Lili Mou | SEKE Team 42/47

Research Pipeline

e Learning foundations

e Catching up the literature

e Figuring out new ideas

e Implementing your idea

e Experimenting for improvement

e Writing up

Lili Mou | SEKE Team

43/47

Thank you for listening!

Questions?

Lili Mou | SEKE Team 44/47

References

Lili Mou | SEKE Team 45/47

References

[Bengio et al., 2003] Bengio, Y., Ducharme, R., Vincent, P., and Jauvin, C. (2003). A neural
probabilistic language model. Journal of Machine Learning Research, 3:1137-1155.

[Collobert et al., 2011] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K.,
and Kuksa, P. (2011). Natural language processing (almost) from scratch. The Journal of
Machine Learning Research, 12:2493-2537.

[Hindle et al., 2012] Hindle, A., Barr, E., Su, Z., Gabel, M., and Devanbu, P. (2012). On
the naturalness of software. In Proceedings of 34th International Conference on Software
Engineering.

[Mikolov et al., 2010] Mikolov, T., Karafiat, M., Burget, L., Cernocky, J., and Khudanpur, S.
(2010). Recurrent neural network based language model. In INTERSPEECH.

[Mnih and Hinton, 2007] Mnih, A. and Hinton, G. (2007). Three new graphical models for
statistical language modelling. In Proceedings of the 24th International Conference on

Machine learning.

Lili Mou | SEKE Team 46/47

[Mnih and Hinton, 2009] Mnih, A. and Hinton, G. (2009). A scalable hierarchical distributed
language model. In Advances in Neural Information Processing Systems.

[Morin and Bengio, 2005] Morin, F. and Bengio, Y. (2005). Hierarchical probabilistic neural
network language model. In Proceedings of International Conference on Artificial Intelligence
and Statistics.

[Mou et al., 2014a] Mou, L., Li, G., Jin, Z., Zhang, L., and Wang, T. (2014a). Tbcnn: A
tree-based convolutional neural network for programming language processing. arXiv preprint
arXiv:1409.5718.

[Mou et al., 2014b] Mou, L., Li, G., Liu, Y., Peng, H., Jin, Z., Xu, Y., and Zhang, L. (2014b).
Building program vector representations for deep learning. arXiv preprint arXiv:1409.3358.

[Pinker, 1994] Pinker, S. (1994). The Language Instinct: The New Science of Language and
Mind. Pengiun Press.

Lili Mou | SEKE Team 47/47

