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Deep Neural Networks

o Widely applied machine learning architectures
speech recognition
computer vision

natural language processing
e Capable of capturing highly complicated (non-linear) features efficiently

e Very little human engineering and prior knowledge is required

people specify the model; machines learn details
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Statistical Program Analysis

[Hindle et al., 2012] compares programming languages to natural languages, and
conclude that programs also have rich statistical properties

e Difficult for human to capture

e Justifying learning-based approaches

However, no deep learning approaches have been proposed or applied in the field of program
analysis.
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Contributions of Our Work

e We are the first to apply deep learning to program analysis

e We propose a real-valued vector representation learning based on abstract syntax trees
[Mou et al., 2014b]

e We propose a tree-based convolutional neural network to capture tree structural infor-
mation [Mou et al., 2014a]
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Background
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Deep Neural Networks
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A Single Layer of Neuron

Model:
y=f(W-x+b)
Output
y=f(Wx+b)
w
Input =
Training:
Gradient descent W «+ W — ag—V{,, b+ b— a%
Limitation:

Linear separation
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Multi-Layer Neural Networks

Model: Stacking multiple layers of neurons

Output layer A Higher level
o (abstract features)

Hidden layers

-~ Lower level
Input layer * (local features)

Training: Gradient descent with back propagation

!
Lili Mou | SEKE Team 10/47



Multi-Layer Neural Networks

Model power:

e 2 layers for any Boolean or continuous function
e 3 layers for any function

Limitation:

o Inefficient (in terms of representation)
The number of hidden units may grow exponentially to capture highly complicated
features
e Poor generalization
Too many parameters = High VC dimension = Poor generalization
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Deep Neural Networks

e Efficient to capture highly complicated features
Features are organized hierarchically, local features at lower layers and abstract
features at higher layers
e Extremely difficult to train
— Long term dependency (gradient would either vanish or blow up)

— Local optima far from optimal
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Deep Learning

Successful pretraining methods extract features unsupervisedly

e Restricted Boltzmann Machine

Minimize the energy

e Autoencoder

Minimize reconstruction error
2-stage strategy

1. Pretraining to initialize the weights meaningfully

2. Fine-tuning with back propagation so that the weights are specific to a problem
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Real-Valued Representation Learning
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Discrete Variables

Words are discrete!
They can't be fed to neural networks directly. (Recall W - x)

Word 100 is 100x larger than Word 17
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Real-Valued Representations

The basic idea:

e Map each word to a vector in R*

e Each dimension capturing some (anonymous) feature
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Learning Vector Representations

e [Bengio et al., 2003], maximizing the conditional probability of the n-th word given
n — 1 words

e [Mnih and Hinton, 2007], maximizing the energy defined on neighboring words

e [Morin and Bengio, 2005, Mnih and Hinton, 2009], hierarchical architectures to reduce
the computational cost

e [Collobert et al., 2011], negative sampling

e [Mikolov et al., 2010], recurrent neural network
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Neural Language Modeling

The goal of language models: maximizing the joint probability of a corpus
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Our Models
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Building Program Vector Representations for Deep Learning
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The Granularities of Program Analysis

e Characterize level?
e Token level?
e Nodes in Abstract Syntax Tree (AST)?

e Statement level? or higher?

Lili Mou | SEKE Team

21/47



The Abstract Syntax Tree

double doubles(double doublee){
return 2 * doublee;

}
FuncDef
Decl Compound
FuncDecl Return
ParameterList ~ TypeDecl Bina| Op

Decl IdentifierType Constant  ID
TypeDecl

IdentifierType
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Formalization

The goal: To code parent’s representation by its children's via a single layer of neurons

n
veo(p) & tanh [ > ;Wi - veo(c;) + b

i=1

leaves under ¢; -
where [; = u are the coefficients for W's.

F#leaves under p
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Negative Sampling

Define distance (Euclidean distance square)

2

n
d = ||vec(p) — tanh Z ;Wi -vec(c;) + b
i=1 2

Cost function
J(d®,dP) = max {o, A+d® - dﬁ”}

Training objective
PP (i) 4(4)
minimize Z](d ,de’)
T
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Empirical Results

Examples of the nearest neighbor query results.

Query Results
Most Similar Most Dissimilar
ID BinaryOp, Constant, ArrayRef, Assignment, StructRef - - - PtrDecl, Compound, Root, Decl, TypeDecl
Constant ID, UnaryOp, StructRef, ArrayRef, Cast -+ - EnumeratorList, ExprList, If, FuncDef, Compound
BinaryOp | ArrayRef, Assignment, StructRef, UnaryOp, ID cee PtrDecl, Compound, FuncDecl, Decl, TypeDecl
ArrayRef BinaryOp, StructRef, UnaryOp, Assignment, Return cee Compound, PtrDecl, FuncDecl, Decl, TypeDecl
If For, Compound, Break, While, Case “e BinaryOp, TypeDecl, Constant, Decl, ID
For If, While, Case, Break, Struct “e BinaryOp, Constant, ID, TypeDecl, Decl
Break While, Case, Continue, Switch, InitList e BinaryOp, Constant, TypeDecl, Decl, ID
While Switch , Continue , Label , Goto S BinaryOp, Constant, Decl, TypeDecl, ID
FuncDecl ArrayDecl, PtrDecl, FuncDef, Typename, Root - -+ ArrayRef, FuncCall, IdentifierType, BinaryOp, ID
ArrayDecl FuncDecl, PtrDecl, Typename, FuncDef, While - -+ BinaryOp, Constant, FuncCall, IdentifierType, ID
PtrDecl FuncDecl, Typename, FuncDef, ArrayDecl “e FuncCall, ArrayRef, Constant, BinaryOp, ID
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k-Means Clustering (k = 3)

Cluster

Sybmols

1

UnaryOp, FuncCall, Assignment, ExprList,
StructRef, BinaryOp, ID, Constant, ArrayRef

FuncDef, TypeDecl, FuncDecl, Compound,
ArrayDecl, PtrDecl, Decl, Root

Typedef, Struct, For, Union, CompoundLiteral,
TernaryOp, Label, InitList, IdentifierType,
Return, Enum, Break, DoWhile, Case,
DeclList, Default, While, Continue,
ParamList, Enumerator, Typename, Goto,
Cast, Switch, EmptyStatement,
EnumeratorList, If
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Hierarchical Clustering

ArrayDecl
PtrDecl

Break

Constant

ID

ArrayRef
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Performance in Supervised Classification
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TBCNN: A Tree-based Convolutional Neural Network for
Programming Language Processing
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Motivation

Programs and natural languages are different in that

e Natural languages contain more symbols (words)

e Programs contain more structure information

“The dog the stick the fire burned beat bit the cat.” [Pinker, 1994]
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Architecture of TBCNN

softmax
— — — H
Vector representation

and coding Tree-based convolution 3-way pooling  Hidden layer ~ Output layer
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Coding Layers

P = Weomb1 - Vec(p)

+ Weomb2 - tanh (Z liWcode,i . VeC(:Di) + bcode)
i
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Tree-based Convolution

n
y = tanh Z Weonv,i * @i + beonv
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3-Way Max Pooling

TOP

LOWER_LEFT LOWER_RIGHT
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The “Continuous Binary Tree" Model

Wi = nOw® 4 Ow® 4 py )
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Problem Definition

e POJ problems
e 2 groups, 4 problems in each groups

e Supervised multi-class classification
according to program functionalities
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‘GRP. ‘ Method ‘ Train Err. |CV Err. | Test Err.

Random guess 75 75 75

LR 24.3 26.86 26.7

1 Linear SVM 24.89 27.51 28.48

RBF SVM 4.38 12.63 11.31

TBCNN 4.03 9.98 10.14
TBCNN-+BOW 3.86 8.37 8.53
Random guess 75 75 75

LR 16.86 18.04 18.84

9 Linear SVM 17.18 17.87 19.48
RBF SVM 0.27 8.21 8.86
TBCNN 0.48 5.31 4.98
TBCNN+BOW 0.54 3.70 3.70
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Detecting Bubble Sort

e Data
109 source codes contain bubble sort
109 source codes do not contain sort

1:1 for developing and testing

e Training

Generate ~10000 mock data samples

e Results
Classifier Features Accuracy
Rand/majority - 50.0
RBF SVM Bag-of-words 62.3
RBF SVM Bag-of-trees 77.1
TBCNN Learned 89.1
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Conclusion and Discussion
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e Deep learning and representations learning background

e Building program vector representations

e Tree-based convolutional neural networks
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Philosophy of Science: Also Belief

Lili Mou | SEKE Team 41/47



Computer Science

Is computer science science?

Is political science science?

Discovery v.s. Invention
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Research Pipeline

e Learning foundations

e Catching up the literature

e Figuring out new ideas

e Implementing your idea

e Experimenting for improvement

e Writing up
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Thank you for listening!

Questions?
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