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Deep Neural Networks

• Widely applied machine learning architectures

speech recognition

computer vision

natural language processing

• Capable of capturing highly complicated (non-linear) features efficiently

• Very little human engineering and prior knowledge is required

people specify the model; machines learn details

Lili Mou | SEKE Team 4/47



Statistical Program Analysis

[Hindle et al., 2012] compares programming languages to natural languages, and
conclude that programs also have rich statistical properties

• Difficult for human to capture

• Justifying learning-based approaches

However, no deep learning approaches have been proposed or applied in the field of program
analysis.
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Contributions of Our Work

• We are the first to apply deep learning to program analysis

• We propose a real-valued vector representation learning based on abstract syntax trees
[Mou et al., 2014b]

• We propose a tree-based convolutional neural network to capture tree structural infor-
mation [Mou et al., 2014a]
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Background
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Deep Neural Networks
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A Single Layer of Neuron

Model:

y = f(W ·x + b)

Input

Output

Training:
Gradient descent W ←W − α ∂J

∂W
, b← b− α ∂J

∂b

Limitation:
Linear separation
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Multi-Layer Neural Networks

Model: Stacking multiple layers of neurons

Input layer

Output layer

. . .

Hidden layers

. . .

.

.

.

Lower level
(local features)

Higher level
(abstract features)

Training: Gradient descent with back propagation
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Multi-Layer Neural Networks

Model power:

• 2 layers for any Boolean or continuous function
• 3 layers for any function

Limitation:

• Inefficient (in terms of representation)
The number of hidden units may grow exponentially to capture highly complicated

features
• Poor generalization

Too many parameters ⇒ High VC dimension ⇒ Poor generalization
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Deep Neural Networks

• Efficient to capture highly complicated features

Features are organized hierarchically, local features at lower layers and abstract
features at higher layers

• Extremely difficult to train

– Long term dependency (gradient would either vanish or blow up)

– Local optima far from optimal
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Deep Learning

Successful pretraining methods extract features unsupervisedly

• Restricted Boltzmann Machine

Minimize the energy

• Autoencoder

Minimize reconstruction error

2-stage strategy

1. Pretraining to initialize the weights meaningfully

2. Fine-tuning with back propagation so that the weights are specific to a problem
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Real-Valued Representation Learning
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Discrete Variables

Words are discrete!

They can’t be fed to neural networks directly. (Recall W · x)

Word 100 is 100x larger than Word 1?
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Real-Valued Representations

The basic idea:

• Map each word to a vector in Rk

• Each dimension capturing some (anonymous) feature
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Learning Vector Representations

• [Bengio et al., 2003], maximizing the conditional probability of the n-th word given
n− 1 words

• [Mnih and Hinton, 2007], maximizing the energy defined on neighboring words

• [Morin and Bengio, 2005, Mnih and Hinton, 2009], hierarchical architectures to reduce
the computational cost

• [Collobert et al., 2011], negative sampling

• [Mikolov et al., 2010], recurrent neural network
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Neural Language Modeling

The goal of language models: maximizing the joint probability of a corpus
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Our Models
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Building Program Vector Representations for Deep Learning

Lili Mou | SEKE Team 20/47



The Granularities of Program Analysis

• Characterize level?

• Token level?

• Nodes in Abstract Syntax Tree (AST)?

• Statement level? or higher?
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The Abstract Syntax Tree

double doubles(double doublee){
return 2 * doublee;

}

FuncDef

Decl Compound

FuncDecl Return

ParameterList TypeDecl BinaryOp

Decl IdentifierType Constant ID

TypeDecl

IdentifierType
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Formalization

The goal: To code parent’s representation by its children’s via a single layer of neurons

vec(p) ≈ tanh

(
n∑

i=1

liWi · vec(ci) + b

)

where li =
#leaves under ci

#leaves under p
are the coefficients for W ’s.
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Negative Sampling

Define distance (Euclidean distance square)

d =

∥∥∥∥∥vec(p)− tanh

(
n∑

i=1

liWi · vec(ci) + b

)∥∥∥∥∥
2

2

Cost function
J(d(i), d

(i)
c ) = max

{
0,∆ + d(i) − d(i)

c

}
Training objective

minimize
Θ

∑
i

J(d(i), d
(i)
c )
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Empirical Results

Examples of the nearest neighbor query results.
Query Results

Most Similar Most Dissimilar
ID BinaryOp, Constant, ArrayRef, Assignment, StructRef · · · PtrDecl, Compound, Root, Decl, TypeDecl

Constant ID, UnaryOp, StructRef, ArrayRef, Cast · · · EnumeratorList, ExprList, If, FuncDef, Compound
BinaryOp ArrayRef, Assignment, StructRef, UnaryOp, ID · · · PtrDecl, Compound, FuncDecl, Decl, TypeDecl
ArrayRef BinaryOp, StructRef, UnaryOp, Assignment, Return · · · Compound, PtrDecl, FuncDecl, Decl, TypeDecl

If For, Compound, Break, While, Case · · · BinaryOp, TypeDecl, Constant, Decl, ID
For If, While, Case, Break, Struct · · · BinaryOp, Constant, ID, TypeDecl, Decl

Break While, Case, Continue, Switch, InitList · · · BinaryOp, Constant, TypeDecl, Decl, ID
While Switch , Continue , Label , Goto · · · BinaryOp, Constant, Decl, TypeDecl, ID

FuncDecl ArrayDecl, PtrDecl, FuncDef, Typename, Root · · · ArrayRef, FuncCall, IdentifierType, BinaryOp, ID
ArrayDecl FuncDecl, PtrDecl, Typename, FuncDef, While · · · BinaryOp, Constant, FuncCall, IdentifierType, ID
PtrDecl FuncDecl, Typename, FuncDef, ArrayDecl · · · FuncCall, ArrayRef, Constant, BinaryOp, ID
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k-Means Clustering (k = 3)

Cluster Sybmols

1 UnaryOp, FuncCall, Assignment, ExprList,
StructRef, BinaryOp, ID, Constant, ArrayRef

2 FuncDef, TypeDecl, FuncDecl, Compound,
ArrayDecl, PtrDecl, Decl, Root

3

Typedef, Struct, For, Union, CompoundLiteral,
TernaryOp, Label, InitList, IdentifierType,
Return, Enum, Break, DoWhile, Case,
DeclList, Default, While, Continue,

ParamList, Enumerator, Typename, Goto,
Cast, Switch, EmptyStatement,

EnumeratorList, If
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Hierarchical Clustering
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Performance in Supervised Classification
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TBCNN: A Tree-based Convolutional Neural Network for
Programming Language Processing
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Motivation

Programs and natural languages are different in that

• Natural languages contain more symbols (words)

• Programs contain more structure information

“The dog the stick the fire burned beat bit the cat.” [Pinker, 1994]
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Architecture of TBCNN

Vector representation
and coding Tree-based convolution 3-way pooling Hidden layer Output layer

softmax
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Coding Layers

p = Wcomb1 · vec(p)

+Wcomb2 · tanh
(∑

i
liWcode,i · vec(xi) + bcode

)
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Tree-based Convolution

y = tanh

(
n∑

i=1

Wconv,i · xi + bconv

)
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3-Way Max Pooling

TOP

LOWER_LEFT LOWER_RIGHT
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The “Continuous Binary Tree” Model

Wi = η
(t)
i W (t) + η

(l)
i W (l) + η

(r)
i W (r)
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Problem Definition

• POJ problems

• 2 groups, 4 problems in each groups

• Supervised multi-class classification
according to program functionalities
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Results

GRP. Method Train Err. CV Err. Test Err.

1

Random guess 75 75 75
LR 24.3 26.86 26.7

Linear SVM 24.89 27.51 28.48
RBF SVM 4.38 12.63 11.31
TBCNN 4.03 9.98 10.14

TBCNN+BOW 3.86 8.37 8.53

2

Random guess 75 75 75
LR 16.86 18.04 18.84

Linear SVM 17.18 17.87 19.48
RBF SVM 0.27 8.21 8.86
TBCNN 0.48 5.31 4.98

TBCNN+BOW 0.54 3.70 3.70
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Detecting Bubble Sort

• Data

109 source codes contain bubble sort

109 source codes do not contain sort

1:1 for developing and testing

• Training

Generate ∼10000 mock data samples

• Results

Classifier Features Accuracy
Rand/majority – 50.0
RBF SVM Bag-of-words 62.3
RBF SVM Bag-of-trees 77.1
TBCNN Learned 89.1
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Conclusion and Discussion
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Wrap up

• Deep learning and representations learning background

• Building program vector representations

• Tree-based convolutional neural networks

Lili Mou | SEKE Team 40/47



Philosophy of Science: Also Belief
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Computer Science

Is computer science science?

Is political science science?

Discovery v.s. Invention
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Research Pipeline

• Learning foundations

• Catching up the literature

• Figuring out new ideas

• Implementing your idea

• Experimenting for improvement

• Writing up
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Thank you for listening!

Questions?
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