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Reference

§1, James O. Berger, Statistical Decision Theory and Bayesian
Analysis, Springer, 1985.

This book covers basic materials of statistical decision theory in an
easy-to-understand yet critical manner. The prerequisite is rather
low.

I Statistical level: moderately serious statistics

I Mathematical level: easy advanced calculus

This slide mainly picks textual materials in Chapter 1. For detailed
math, please refer to other resources.



Introduction

Decision theory, as the name implies, is concerned with
the problem of making decisions. Statistical decision
theory is concerned with the making of decision in the
presence of statistical knowledge which sheds light on
some of the uncertainties involved in the decision problem.



Beyond Classical Statistics

Classical statistics is directed towards the use of sample
information (the data arising from the statistical
investigation) in making inference about θ.

Non-sample information

I Loss

I Prior



Loss

Statisticians seem to be pessimistic creatures who think in
terms of losses. Decision theorists in economics and
business talk instead in terms of gains (utility).



Prior

I A lady, who adds milk to her tea, claims to be able to tell
whether the tea or the milk was poured into the cup first. In all
of ten trials conducted to test this, she correctly determines
which was poured first.

I A music expert claims to be able to distinguish a page of Haydn
score from a page of Mozart score. In ten trials conducted to
test this, he makes a correct determination each time.

I A drunken friend says he can predict the out come of a flip o f
a fair coin. In then trials conducted to test this, he is correct
each time.

Frequentist’s hypothesis test?



Probability of θ

After all, in most situations there is nothing “random”
about θ. A typical example is there θ is an unknown but
fixed physical constant (say the speed of light) which is to
be concerned. The basic idea is that probability
statements concerning θ are then to be interpreted as
“personal probabilities” reflecting the degree of personal
belief in the likelihood of the given statement.



Abusive Frequentist’s Tools

What is statistical inference?

In statistical inference the goal is not to make an
immediate decision, but is instead to provide as
“summary” of the statistical evidence which a wide variety
of future “users” of this evidence can easily incorporate
into their own decision-making process. . .
Because of this point, many statisticians use “statistical
inference” as a shield to ward off consideration of losses
and prior information.



Point Null Hypothesis Test

For a large enough sample size, the classical test will be
virtually certain to reject. Likewise a difference that is not
significant statistically can nevertheless be very important
practically.

In particular, the fact that the stopping rule affects the
computation of the p-value means that frequentists often
do not terminate experiments early, even when it is
obvious what the conclusions are, lest it adversely affect
their statistical analysis.1

1Machine Learning: A Probabilistic Perspective:



Point Null Hypothesis Test

Optional stopping in these various forms is potentially
quite common. In a recent survey, 58% of researchers
admitted to having collected more data after looking to
see whether the results were significant and 22% admitted
to stopping an experiment early because they had found
the result that they were looking for.2

2Adam Sanborn, et al., The Frequentists Implications of Optional Stopping
on Bayesian Hypothesis Tests.



Point Null Hypothesis Test (2)

Frequentists are hypocrisy!

It seems somewhat nonsensical, however, to deliberately
formulate a problem wrong, and then in an adhoc fashion
explain the final results in more reasonable terms.



Who cares about nonoccurrence?

Suppose a substance to be analyzed can be sent either to
a laboratory in New York or a laboratory in California.
The two labs seem equally good, so a fair coin is flipped
to choose between them, which “heads” denoting that the
lab in New York will be chosen. The coin is flipped and
comes up tails, so the California lab is used. After a while,
the experimental results come back and a conclusion and
report must be developed. Should this conclusion take
into account the fact that the coin could have been heads,
and hence that the experiment in New York might have
been performed instead?



Frequentists v.s. Conditionalists

Common sense (and the conditional viewpoint) cries no, that only
the experiment actually performed is relevant, but frequentist
reasoning would call for averaging over all possible data, even the
possible New York data.



The Likelihood Principle

Definition. For observed data, x , the function `(θ) = f (x |θ),
considered as a function of θ, is called the likelihood function.

The Likelihood Principle. In making inferences or decisions about
θ after x is observed, all relevant experimental information is
contained in the likelihood function for the observed x . Furthermore,
two likelihood functions contain the same information about θ if
they are proportional to each other (as functions of θ).



Reemphasizing the Conditionalist Perspective

Jeffrey (1961):3

. . . a hypothesis which may be true may be rejected
because it has not predicted observable results which have
not occurred.

“Thus, . . . , the null hypothesis that θ = 1
2 certainly would not

predict that X would be larger than 9, and indeed such values do
not occur. Yet the probabilities of these unpredicted and not
occurring observations are included in the classical evidence against
the hypothesis.”

3Jeffreys, Hl, 1961. Theory of Probability (3rd edn.). Oxford University Press



Twists and Turns

Pratt (1962):4

I An engineer draws a random sample of electron tubes and
measures the plate voltages under certain conditions with a
very accurate voltmeter, accurate enough so that measurement
error is negligible compared with the variability of the tubes.

I A statistician examines the measurements, which look normally
distributed and vary from 75 to 99 volts with a mean of 87 and
a standard deviation of 4. He makes the ordinary normal
analysis, giving a confidence interval for the true mean.

4Pratt, J. W., 1962. Discussion of A. Biernbaum’s “On the foundations of
statistical inference.” J. Amer. Statist. Soc. (Ser. B) 27, 169–203.
See also Berger, J., Statistical Decision Theory and Bayesian Analysis.



Twists and Turns (2)

I Later he visits the engineer’s laboratory, and notices that the
voltmeter used reads only as far as 100, so the population
appears to be “censored.” This necessitates a new analysis, if
the statistician is orthodox.

I However, the engineer says he has another meter, equally
accurate and reading to 1000 volts, which he would have used
if any voltage had been over 100.

I This is a relief to the orthodox statistician, because it means
the population was effectively uncensored after all.



Twists and Turns (3)

I But the next day the engineer telephones and says, “I just
discovered my high-range voltmeter was not working the day I
did the experiment you analyzed for me.”

I The statistician ascertains that the engineer would not have
held up the experiment until the meter was fixed, and informs
him that a new analysis will be required.

I The engineer is astounded. He says, “But the experiment
turned out just the same as if the high-range meter had been
working. I obtained the precise voltages of my sample anyway,
so I learned exactly what I would have learned if the high-range
meter had been available. Next you’ll be asking about my
oscilloscope.”



The Weak Conditionality Principle.

Suppose one can perform either of two experiments E1 or E2, both
pertaining to θ, and that the actual experiment conducted is the
mixed experiment of first choosing J = 1 or 2 with probability 1

2
each (independent of θ), and then performing experiment EJ . Then
the actual information about θ obtained from the overall mixed
experiment should depend only on the experiment Ej that is actually
performed.



Choosing a Paradigm or Decision Principle

. . . statistics is a collection of useful methodologies, and
that one should “keep an open mind as to which method
to use in a given application.” This is indeed the most
common attitude among statisticians.

While we endorse this attitude in a certain practical sense,
we do not endorse it fundamentally.

We have argued that this desired fundamental analysis
must be compatible with the Likelihood Principle.
Furthermore, . . . it is conditional Bayesian analysis that is
the only fundamentally correct conditional analysis.

. . . we would strongly argue that conditional (Bayesian)
reasoning should be the primary weapon in a statistician’s
arsenal.


