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Why Unsupervised Parsing?

Engineering motivation:

I ∼6,000 languages in the world

I Treebanks for ∼70 languages (many of them small)

I Syntactic annotation

I slow and costly

I relying on expert linguists

We need a way of inducing syntactic knowledge

I Based on simple, crowd-sourcable sentence annotation

I E.g., natural language inference, sentiment
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Why Unsupervised Parsing?

Cognitive motivation: how children learn languages?

I 18 months: start with two word utterances

I By 5 years: generate complex syntax (Brown’s stages):

I relative clauses, infinitival, gerunds, wh-phrases, passives

I No explicit supervision is provided (children don’t see syntax trees)

I But they receive indirect feedback: is an utterance understood or not?

To model this, we need a way of inducing syntactic knowledge based on simple semantic labels at

the sentence level
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Unsupervised Parsing

Goal: learn linguistically meaningful syntax (tree structures) without treebank supervision

Approach:

I Get training signal from a secondary task:

I Language modeling

I Semantically oriented tasks (e.g., natural language inference, sentiment)

I Try to induce meaningful “latent” tree structures
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Hard Discrete Parsers

Examples:

I RL-SPINN [Yogatama et al., 2017], Soft-Gating [Maillard et al., 2017],

Gumbel-Tree-LSTM [Choi et al., 2018]

Advantages:

I Models have grounded parsing actions

Disadvantages: Not differentiable

I Reinforcement learning =⇒ doubly stochastic gradient descent, poor local optima, low

self-agreement

I Dynamic Programming marginalization =⇒ high time complexity

5 / 25



Soft Continuous Parsers

Very recent work:

I Parsing-reading-predict network [PRPN, Shen et al., 2018]

I Ordered Neurons [ON-LSTM, Shen et al., 2019]

Advantages:

I Relaxing discrete parsing by continuous notions (e.g., structured attention) =⇒ easy to train

by differentiation

Disadvantages:

I Inducing syntax from continuous relaxation is not learnable

I Parsing operations are stipulated externally by heuristics
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Combine both Worlds by Imitation Learning

I Is it possible to combine both approaches?

I Yes! We can use imitation learning!

I Coupling soft continuous parser and hard discrete parser at the intermediate output level

(parse tree)
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Combine both Worlds by Imitation Learning

Hard Parser

Soft Parser

Jparse

Imperfect parsing label

Pretraining

Induce

Supervised Learning Policy refinement

Jtask1

Jtask2
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PRPN as the Soft Parser

Parsing-reading-predict network (PRPN; [Shen et al. 2018])
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Published as a conference paper at ICLR 2018

Parsers are also related to our work since they are all inferring grammatical tree structure given a
sentence. For example, SPINN (Bowman et al., 2016) is a shift-reduce parser that uses an LSTM as
its composition function. The transition classifier in SPINN is supervisedly trained on the Stanford
PCFG Parser (Klein & Manning, 2003) output. Unsupervised parsers are more aligned with what
our model is doing. Klein & Manning (2004) presented a generative model for the unsupervised
learning of dependency structures. Klein & Manning (2002) is a generative distributional model for
the unsupervised induction of natural language syntax which explicitly models constituent yields
and contexts. We compare our parsing quality with the aforementioned two papers in Section 6.3.

3 MOTIVATION

Figure 1: Hard arrow represents syntactic tree structure and parent-to-child dependency relation,
dash arrow represents dependency relation between siblings

Suppose we have a sequence of tokens x0, ..., x6 governed by the tree structure showed in Figure 1.
The leafs xi are observed tokens. Node yi represents the meaning of the constituent formed by its
leaves xl(yi), ..., xr(yi), where l(·) and r(·) stands for the leftmost child and right most child. Root r
represents the meaning of the whole sequence. Arrows represent the dependency relations between
nodes. The underlying assumption is that each node depends only on its parent and its left siblings.

Directly modeling the tree structure is a challenging task, usually requiring supervision to learn (Tai
et al., 2015). In addition, relying on tree structures can result in a model that is not sufficiently robust
to face ungrammatical sentences (Hashemi & Hwa, 2016). In contrast, recurrent models provide a
convenient way to model sequential data, with the current hidden state only depends on the last
hidden state. This makes models more robust when facing nonconforming sequential data, but it
suffers from neglecting the real dependency relation that dominates the structure of natural language
sentences.

Figure 2: Proposed model architecture, hard line indicate valid connection in Reading Network,
dash line indicate valid connection in Predict Network.
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PRPN as the Soft Parser
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Gumbel-Tree-LSTM as the Hard Parser
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Our Approach
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Our Approach

Two-stage training:

I Stage 1: step-by-step supervised

learning
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Our Approach

Two-stage training:

I Stage 1: step-by-step supervised

learning

I Stage 2: policy refinement on NLI

task
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Experimental Results: Parsing Results on All-NLI

Model Mean F Self-agreement

Left-Branching 18.9 -

Right-Branching 18.5 -

Balanced-Tree 22.0 -

Gumbel-Tree-LSTM 21.9 56.8

PRPN 51.6 65.0

Imitation (first stage only) 52.0 70.8

Imitation (two stages) 53.7 67.4

More settings and analysis in our paper
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Relationship to Previous Studies

Do latent tree learning models identify meaningful structure in sentences?

[Williams et al., 2018]

I Our results: Yes, but we need a “good” initialization.

Tree-Based Neural Sentence Modeling [Shi et al., 2018]: parse/trivial trees are roughly the same

for classification performance

I Our results: same findings in terms of NLI accuracy
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One last question

Why does NLI help unsupervised parsing?

NLI Loss

Tree Space
Trivial trees

(e.g., left/right-branching)
True parse trees Other not 

understandable trees
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One last question

Why does NLI help unsupervised parsing?

NLI Loss

Tree Space
Trivial trees

(e.g., left/right-branching)
True parse trees Other not 

understandable trees

After first stage of 
imitation learning

Second stage 
policy refinement
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Conclusion

I Imitation learning for unsupervised parsing

I A flexible way of coupling heterogeneous models on the intermediate output level

I Other applications: semantic parsing [Mou et al., 2017], discourse parsing

I Showing the usefulness of semantic tasks for unsupervised parsing

I More research needed on tasks, models, and combinations in this direction
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Thank you!

Q&A
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