A Brief Introduction to Domain Adaptation

Lili Mou doublepower.mou@gmail.com

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

Introduction

Prevailing Methods

Conclusion and Discussion

◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Outline

Introduction

Prevailing Methods

Conclusion and Discussion

What's domain¹ adaptation?

Source domain: $D^s \sim \mathcal{D}^s$, Target domain: $D^t \sim \mathcal{D}^t$ (D: datasets, \mathcal{D} : distributions)

But,...

 $\mathcal{D}^s \neq \mathcal{D}^t$

What's domain¹ adaptation?

Source domain: $D^s \sim \mathcal{D}^s$, Target domain: $D^t \sim \mathcal{D}^t$ (D: datasets, \mathcal{D} : distributions)

But,...

$$\mathcal{D}^s \neq \mathcal{D}^t$$

Why do we need domain adaptation?

- \mathcal{D}^s may be larger than \mathcal{D}^t
- \mathcal{D}^t may be unlabeled
- more efficient to use an existing model built on \mathcal{D}^s

¹Defined by datasets.

Paradigms

- Fully supervised domain adaptation
 - \mathcal{D}^t is labeled (but typically small)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

- Semi-supervised domain adaptation
 - \mathcal{D}^t is unlabeled

Examples

- Named entity recognition (NER) in news corpus is different from NER in medical corpus
- Sentiment analysis in one dataset is different from one anther

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Examples

- Named entity recognition (NER) in news corpus is different from NER in medical corpus
- Sentiment analysis in one dataset is different from one anther
- Bug detectors in C are different from Java
- Requirement engineering for Mobile software is different from PC software

▶ ...

Naïve Baselines [1]

- Source only
- Target only
- PRED: Train SourceOnly, and use the output as a feature in the target model

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Linear interpolating

Outline

Introduction

Prevailing Methods

Conclusion and Discussion

EasyAdapt²

Let $\mathcal{X} = \mathbb{R}^F$ be *F*-dimensional feature space.

Define $\Phi^s, \Phi^t \colon \mathbb{R}^F \to \mathbb{R}^{3F}$

$$\bullet \ \Phi^s: \ \boldsymbol{x} \mapsto \langle \boldsymbol{x}, \boldsymbol{x}, \boldsymbol{0} \rangle$$
$$\bullet \ \Phi^t: \ \boldsymbol{x} \mapsto \langle \boldsymbol{x}, \boldsymbol{0}, \boldsymbol{x} \rangle$$

$\mathsf{EasyAdapt}^2$

Let $\mathcal{X} = \mathbb{R}^F$ be *F*-dimensional feature space.

Define $\Phi^s, \Phi^t \colon \mathbb{R}^F \to \mathbb{R}^{3F}$

$$\blacktriangleright \ \Phi^s: \ {\boldsymbol x} \mapsto \langle {\boldsymbol x}, {\boldsymbol x}, {\boldsymbol 0} \rangle$$

$$\blacktriangleright \ \Phi^t : \ {\boldsymbol x} \mapsto \langle {\boldsymbol x}, {\boldsymbol 0}, {\boldsymbol x} \rangle$$

Why does it work at all?

Consider a named entity recognition problem

- Source domain: Politics
- Target domain: Biology
- Original features: Bag-of-words, "the," "bush" ? (x_1, x_2)

• Augmented features $(x_1, x_2, \tilde{x}_1^s, \tilde{x}_2^s, \tilde{x}_2^s, \tilde{x}_2^t)$

Weights: $(w_1, w_2, \tilde{w}_1^s, \tilde{w}_2^s, \tilde{w}_1^t, \tilde{w}_2^s)$

- ▶ w₁, w₂: general feature weights for "the," "bush"
- $\tilde{w}_1^s, \tilde{w}_2^s$: source domain features
- $\tilde{w}_1^t, \tilde{w}_2^t$: target domain features

Kernel Version

$$\Phi^s(\boldsymbol{x}) = \langle \Phi^s(\boldsymbol{x}), \Phi^s(\boldsymbol{x}), \boldsymbol{0} \rangle$$

$$\Phi^t(\boldsymbol{x}) = \langle \Phi^s(\boldsymbol{x}), \boldsymbol{0}, \Phi^s(\boldsymbol{x}) \rangle$$

$$\tilde{K}(\boldsymbol{x},\boldsymbol{x}') = \left\{ \begin{array}{ll} 2K(\boldsymbol{x},\boldsymbol{x}'), & \text{if } x,x' \text{are in a same domain} \\ K(\boldsymbol{x},\boldsymbol{x}'), & \text{otherwise} \end{array} \right.$$

 \Rightarrow the similarity of samples in a same domain is twice as in different domains

Several heuristics may help

- Removing misleading training instances in the source domain
- Assigning more weights to labeled target instances than labeled source instances

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

 Augmenting training instances iwth taret instances with predicted labels

Labeling Adaptation v.s. Instance Adaptation

Maximum likelihood estimation for classification

$$\begin{split} \theta^* &= \operatorname*{argmax}_{\theta} \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} p(x, y) \log p(y|x; \theta) \, \mathrm{d}x \\ &\approx \operatorname*{argmax}_{\theta} \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} \tilde{p}(x, y) \log(y|x; \theta) \, \mathrm{d}x \\ &= \operatorname*{argmax}_{\theta} \int_{\mathcal{X}} \sum_{y \in \mathcal{Y}} \tilde{p}(x) \tilde{p}(y|x) \log(y|x; \theta) \, \mathrm{d}x \end{split}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のへで

Labeling adaptation: $p_s(y|x) \neq p_t(y|x)$

► p(person|bush)

Instance adaptation: $p_s(x) \neq p_t(x)$

Data at hand

- Labeled data in the source domain $D_s = \{(x_i^s, y_i^s)\}$
- ► Labeled data in the target domain $D_{t,l} = \left\{ \left(x_j^{t,l}, y_j^{t,l} \right) \right\}$
- Unlabeled data in the target domain $D_{t.u} = \left\{ \left(x_k^{t,u} \right) \right\}$

Attemp#1: Using (Labeled) Source Data

Using \mathcal{D}_s :

Using $p_s(y|x)$ to approximate $p_t(y|x)$, we obtain

$$\begin{aligned} \theta_t^* &\approx & \arg\max_{\theta} \int_{\mathcal{X}} \frac{p_t(x)}{p_s(x)} p_s(x) \sum_{y \in \mathcal{Y}} p_s(y|x) \log p(y|x;\theta) dx \\ &\approx & \arg\max_{\theta} \int_{\mathcal{X}} \frac{p_t(x)}{p_s(x)} \tilde{p}_s(x) \sum_{y \in \mathcal{Y}} \tilde{p}_s(y|x) \log p(y|x;\theta) dx \\ &= & \arg\max_{\theta} \frac{1}{N_s} \sum_{i=1}^{N_s} \frac{p_t(x_i^s)}{p_s(x_i^s)} \log p(y_i^s|x_i^s;\theta). \end{aligned}$$

Here we use only the labeled instances in \mathcal{D}_s but we adjust the weight of each instance by $\frac{p_t(x)}{p_s(x)}$. The major difficulty is how to accurately estimate $\frac{p_t(x)}{p_s(x)}$.

Attemp#2: Using (Labeled) Target Data

Using $\mathcal{D}_{t,l}$:

$$\begin{aligned} \theta_t^* &\approx & \arg \max_{\theta} \int_{\mathcal{X}} \tilde{p}_{t,l}(x) \sum_{y \in \mathcal{Y}} \tilde{p}_{t,l}(y|x) \log p(y|x;\theta) dx \\ &= & \arg \max_{\theta} \frac{1}{N_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_j^{t,l}|x_j^{t,l};\theta) \end{aligned}$$

Note that this is the standard supervised learning method using only the small amount of labeled target instances. The major weakness of this approximation is that when $N_{t,l}$ is very small, the estimation is not accurate.

Attemp#3: Using (Unlabeled) Target Data

Using $\mathcal{D}_{t,u}$:

$$\begin{aligned} \theta_t^* &\approx & \arg \max_{\theta} \int_{\mathcal{X}} \tilde{p}_{t,u}(x) \sum_{y \in \mathcal{Y}} p_t(y|x) \log p(y|x;\theta) dx \\ &= & \arg \max_{\theta} \frac{1}{N_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in \mathcal{Y}} p_t(y|x_k^{t,u}) \log p(y|x_k^{t,u};\theta) \end{aligned}$$

The challenge here is that $p_t(y|x_k^{t,u};\theta)$ is unknown to us, thus we need to estimate it. One possibility is to approximate it with a model $\hat{\theta}$ learned from \mathcal{D}_s and $\mathcal{D}_{t,l}$. For example, we can set $p_t(y|x,\theta) =$ $p(y|x;\hat{\theta})$. Alternatively, we can also set $p_t(y|x,\theta)$ to 1 if $y = \arg \max_{y'} p(y'|x;\hat{\theta})$ and 0 otherwise.

くしゃ (雪) (雪) (雪) (雪) (雪) (

Overall Heuristics

$$\begin{split} \hat{\theta} &= \arg \max_{\theta} \left[\lambda_s \cdot \frac{1}{C_s} \sum_{i=1}^{N_s} \alpha_i \beta_i \log p(y_i^s | x_i^s; \theta) \right. \\ &+ \lambda_{t,l} \cdot \frac{1}{C_{t,l}} \sum_{j=1}^{N_{t,l}} \log p(y_j^{t,l} | x_j^{t,l}; \theta) \\ &+ \lambda_{t,u} \cdot \frac{1}{C_{t,u}} \sum_{k=1}^{N_{t,u}} \sum_{y \in \mathcal{Y}} \gamma_k(y) \log p(y | x_k^{t,u}; \theta) \\ &+ \log p(\theta) \right], \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○○ ○○

Structural Corresponding Learning (SCL) [3]

Find m pivot features

- Occur frequently and behave similarly in both domains
- Pivot features *per se* shall diverge enough to adequately characterize the nuances of the task
- E.g., POS tagging The signal required to of investment required
- For each pivot feature $\tilde{f}_l(\boldsymbol{x})$, perform auto-regression on both domains

$$\hat{\boldsymbol{w}}_l = \operatorname*{argmin}_{\boldsymbol{w}} \left(\sum_j L(\boldsymbol{w}^T \boldsymbol{x}, \tilde{f}_l(\boldsymbol{x}_j)) \right)$$

SCL (Cont.)

Principal feature map

$$W = \begin{bmatrix} | & | \\ \hat{w}_1 & \cdots & \hat{w}_m \\ | & | \end{bmatrix}$$
$$[U \ D \ V^T] = \mathsf{SVD}(W)$$
$$\theta = U[1:h,:]$$

• Use $(\boldsymbol{x}; \boldsymbol{\theta}^T \boldsymbol{x})$ when training and predicting

SCL (Cont.)

Principal feature map

$$W = \begin{bmatrix} | & | \\ \hat{w}_1 & \cdots & \hat{w}_m \\ | & | \end{bmatrix}$$
$$[U \ D \ V^T] = \mathsf{SVD}(W)$$
$$\theta = U[1:h,:]$$

• Use $(\boldsymbol{x}; \boldsymbol{\theta}^T \boldsymbol{x})$ when training and predicting

Discussion:

- SVD is a low-rank approximation, only necessary when the # of pivot features is overwhelming
- $\theta^T x$ is an affine transformation of x. When $\theta^T x$ is concatenated with x, θ can be absorbed into weights.

Outline

Introduction

Prevailing Methods

Conclusion and Discussion

Conclusion

Prevailing odels

- Easy adaptation
- Instance weighting
- Structural corresponding learning

Domain adaptation in the neural network regime

- Vector representation trained by "pivot" corpus [4]
- Neural networks are domain adaptable by its nature

References

- 1 Hal Daumé III, Frustratingly easy domain adaptation, *Proc. ACL*, 2007
- 2 Jing Jiang et al., Instance weighting for domain adaptation in NLP, *Proc. ACL*, 2007
- 3 John Blitzer et al., Domain adaptation with structural correspondence learning, *Proc. EMNLP*, 2006
- 4 Barbara Plank, et al., Embedding semantic similarity in tree kernels for domain adaptation of relation extraction, *Proc. ACL*, 2013

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <