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Agenda

 Background of neural networks
— Miniproject: CNN and its visualization

» Adversarial samples
- Miniproject: Crafting adversarial data

* Open research
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Philosophy of Deep Learning

* Consider hand-written digit recognition

74z} /jold

* Deep learning: End-to-end training
- Input: raw signal (28 x 28 pixels)
— Output: the target labels "7," "2," "1," "0," and "4."
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A Convolutional Neural Network
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Training

 How do we learn weights?
- Backpropagation

- Compute the partial derivative of a "loss" w.r.t. each
parameter

- Take a small step towards the derivative

y-axis: loss
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What are these features?

 Visualizing weights

Krizhevsky, Alex, llya Sutskever, and Geoffrey E. UNIVERSITY OF

Hinton. "_Imagenet classification with deep WATE R LOO

convolutional neural networks." NIPS. 2012.




What are these features?

 Visualizing the activation functions
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Mini-Project

e Code

https://www.dropbox.com/s/iafhbi8 7mtk67gk/Adversa
rial.zip?dI=0

« Cached data

https://www.dropbox.com/s/m2qn92g5b8ky4dmo/adv
_data.zip?dI=0

e Slides avallable at
http://sei.pku.edu.cn/~moull12
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Think of the Training Process

e Loss: L =f(x; w)
* Training objective: minimize L
« Compute: Y/, f(x; w)
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Think of the Training Process

e Loss: L =f(x; w)
* Training objective: minimize L
« Compute: Y/, f(x; w)

« What if we compute: V/, f(x; w)
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Adversarial Samples from Random
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Figure 5: Randomly generated fooling images for a convolutional network trained on CIFAR-
10. These examples were generated by drawing a sample from an isotropic Gaussian, then taking a
gradient sign step in the direction that increases the probability of the “airplane” class. Yellow boxes
indicate samples that successfully fool the model into believing an airplane is present with at least

50% confidence. “Airplane” is the hardest class to construct fooling images for on CIFAR-10, so
this figure represents the worst case in terms of success rate.
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Goodfellow, lan J., Jonathon Shlens, and Christian Szegedy. "Explaining " WATE R Loo

and harnessing adversarial examples." ICLR, 2015.
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Adversarial Samples from Real Data
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Approach

Xadv — X —€- SlgH(VX J(X, ytarget))
* Yager . Whatever target you want

» Take the sign of the partial derivative
- Alternatively, we can truncate the gradiate
- So that the adversarial image is not too far away

e Can Interate several times If necessary
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Ubiquity of Adverarial Samples

» A same adversarial sample works:
- For different networks (models)
- Even after further perturbation with noise

UNIVERSITY OF
Kurakin, Alexey, lan Goodfellow, and Samy Bengio. WAT E R Loo

"Adversarial examples in the physical world." ICLR, 2017 .



Mini-Project

* Generate Adversarial Samples by Yourselves
* Results

i1 88 £ i3 K4

6(0.93) 4(0.98) 3(0.99) 5(0.98) 9(1.00)
 Interpretation, predicted as "4" w.p. 98%
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Open Topics

e Test the robustness of NNs
* Further confirm the ubiquity of adv samples

» Crafting more deceptive adversarial samples
* Training more robust machine learning models
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Thanks!

QA
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