Document Modeling and Discourse Analysis

Lili Mou doublepower.mou@gmail.com

Document Modeling with Gated Recurrent Neural Network for Sentiment Classification

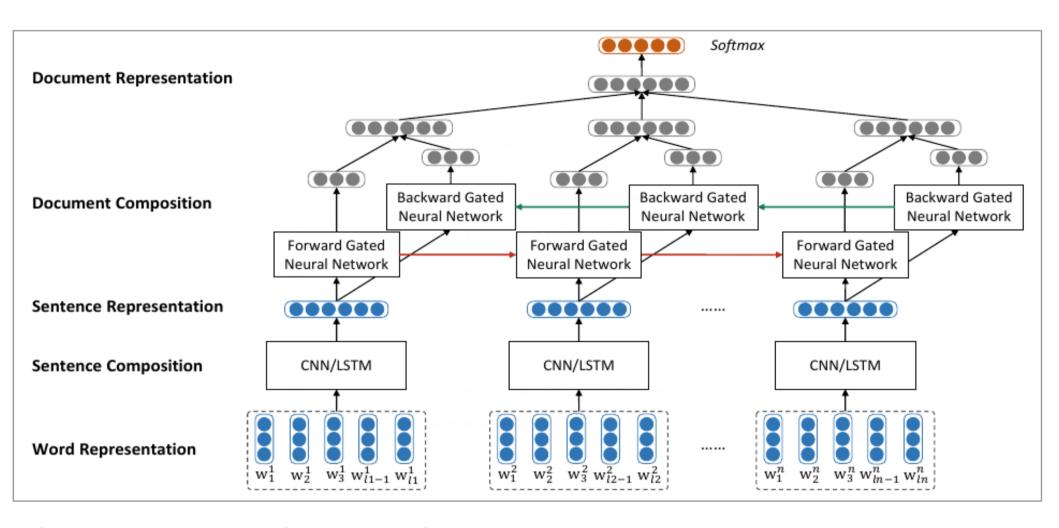
Duyu Tang, Bing Qin*, Ting Liu

Harbin Institute of Technology, Harbin, China {dytang, qinb, tliu}@ir.hit.edu.cn

- Task: Document-level sentiment analysis
- Datasets:
- IMDB (official split) & Yelp Dataset Challenge (4:1:1)

Corpus	#docs	#s/d	#w/d	V	#class	Class Distribution
Yelp 2013	335,018	8.90	151.6	211,245	5	.09/.09/.14/.33/.36
Yelp 2014	1,125,457	9.22	156.9	476,191	5	.10/.09/.15/.30/.36
Yelp 2015	1,569,264	8.97	151.9	612,636	5	.10/.09/.14/.30/.37
IMDB	348,415	14.02	325.6	115,831	10	.07/.04/.05/.05/.08/.11/.15/.17/.12/.18

Architecture



Sentence-level: CNN or LSTM

Document-level: GRU + Avg Pooling

Comparing with Other Methods

	Yelp 2013		Yelp 2014		Yelp 2015		IMDB	
	Accuracy	MSE	Accuracy	MSE	Accuracy	MSE	Accuracy	MSE
Majority	0.356	3.06	0.361	3.28	0.369	3.30	0.179	17.46
SVM + Unigrams	0.589	0.79	0.600	0.78	0.611	0.75	0.399	4.23
SVM + Bigrams	0.576	0.75	0.616	0.65	0.624	0.63	0.409	3.74
SVM + TextFeatures	0.598	0.68	0.618	0.63	0.624	0.60	0.405	3.56
SVM + AverageSG	0.543	1.11	0.557	1.08	0.568	1.04	0.319	5.57
SVM + SSWE	0.535	1.12	0.543	1.13	0.554	1.11	0.262	9.16
JMARS	N/A	-	N/A	_	N/A	_	N/A	4.97
Paragraph Vector	0.577	0.86	0.592	0.70	0.605	0.61	0.341	4.69
Convolutional NN	0.597	0.76	0.610	0.68	0.615	0.68	0.376	3.30
Conv-GRNN	0.637	0.56	0.655	0.51	0.660	0.50	0.425	2.71
LSTM-GRNN	0.651	0.50	0.671	0.48	0.676	0.49	0.453	3.00

Model Analysis

	Yelp 2013		Yelp 2014		Yelp 2015		IMDB	
	Accuracy	MSE	Accuracy	MSE	Accuracy	MSE	Accuracy	MSE
Average	0.598	0.65	0.605	0.75	0.614	0.67	0.366	3.91
Recurrent	0.377	1.37	0.306	1.75	0.383	1.67	0.176	12.29
Recurrent Avg	0.582	0.69	0.591	0.70	0.597	0.74	0.344	3.71
Bi Recurrent Avg	0.587	0.73	0.597	0.73	0.577	0.82	0.372	3.32
GatedNN	0.636	0.58	0.656	0.52	0.651	0.51	0.430	2.95
GatedNN Avg	0.635	0.57	0.659	0.52	0.657	0.56	0.416	2.78
Bi GatedNN Avg	0.637	0.56	0.655	0.51	0.660	0.50	0.425	2.71

Remarks

- Weird to use LSTM and GRU differently
- for sentence-level and document level modeling

Consensus: LSTM ~ GRU

Shallow Convolutional Neural Network for Implicit Discourse Relation Recognition

Biao Zhang¹, Jinsong Su¹; Deyi Xiong², Yaojie Lu¹, Hong Duan¹ and Junfeng Yao¹
Xiamen University, Xiamen, China 361005¹
Soochow University, Suzhou, China 215006²
{zb, lyj}@stu.xmu.edu.cn, {jssu, hduan, yao0010}@xmu.edu.cn

dyxiong@suda.edu.cn

Task: To classify the relation between 2 sentences

(successive in a paragraph, possibly)

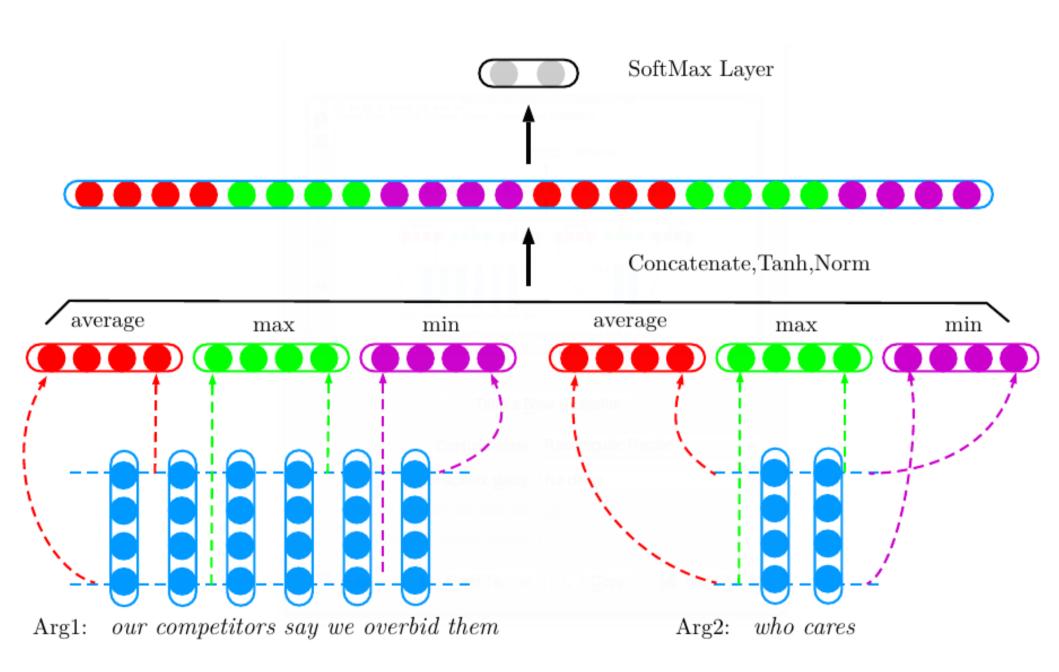
SHORT

Arg1: Our competitions say we overbid

Arg2: Who cars

Label: COMPARISON

Other labels: TEMPORAL, CONTINGENCY, EXPANSION



Statistics

Relation	Positive/Negative Sentences								
Kelation	Train	Dev	Test						
Сомр.	1942/1942	197/986	152/894						
CONT.	3342/3342	295/888	279/767						
EXP.	7004/7004	671/512	574/472						
TEMP.	760/760	64/1119	85/961						

Results

Relation	Model	Precision	Recall	Accuracy	MacroF1
	SVM	22.22	60.53	63.48	32.51
COMP. vs Other	TSVM	20.53	66.45	57.74	31.37
	Add-Bro	22.79	64.47	63.10	33.68
	No-Cro	22.89	67.76	62.14	34.22
	RAE	18.38	62.50	54.21	28.40
	SCNN-No-Norm	21.07	54.61	63.67	30.40
	SCNN	22.00	67.76	60.42	33.22
	SVM	39.70	67.03	64.05	49.87
CONT. vs Other	TSVM	38.72	67.03	62.91	49.08
	Add-Bro	39.14	72.40	62.62	50.82
	No-Cro	39.50	74.19	62.81	51.56
	RAE	37.55	68.10	61.28	48.41
	SCNN-No-Norm	39.02	71.33	62.62	50.44
	SCNN	39.80	75.29	63.00	52.04
	SVM	66.35	60.10	61.38	63.07
EXP. vs Other	TSVM	66.48	61.15	61.76	63.70
	Add-Bro	65.89	58.89	60.71	62.19
	No-Cro	66.73	61.15	61.95	63.82
	RAE	58.24	70.29	56.02	63.67
	SCNN-No-Norm	59.39	74.39	58.03	66.05
	SCNN	56.29	91.11	56.30	69.59
	SVM	15.76	68.24	67.78	25.61
TEMP. vs Other	TSVM	16.26	77.65	65.68	26.88
	Add-Bro	15.10	68.24	66.25	24.73
	No-Cro	13.89	64.71	64.53	22.87
	RAE	10.02	60.00	52.96	17.17
	SCNN-No-Norm	18.26	67.06	72.94	28.71
	SCNN	20.22	62.35	76.95	30.54

Remarks

- Related topic: sentence pair modeling
- Related task: paragraph detection
- New dataset:
 - A large annotated corpus for learning natural language inference, EMNLP, best data set or resource paper

Discourse Element Identification in Student Essays based on Global and Local Cohesion

Wei Song[†], Ruiji Fu[‡], Lizhen Liu[†], Ting Liu[§]

†Information Engineering, Capital Normal University, Bejing 100048, China ‡Iflytek Research Beijing, Beijing 100083, China §Harbin Institute of Technology, Harbin 150001, China {wsong, lzliu}@cnu.edu.cn, rjfu@iflytek.com, tliu@ir.hit.edu.cn

Task: To classify the role of a sentence in an essay

Dataset: High school essays, annotated by two volunteers NOT publicly available

Element	Definition
Introduction (I)	introduces the background and/or grabs readers' attention
Prompt (P)	restates or summarize the prompt
Thesis (T)	states the author's main claim on the issue for which he/she is arguing
Main idea (M)	asserts foundational ideas or aspects that are related to the thesis
Supporting idea (S)	provides evidence to explain or support the thesis and main ideas
Conclusion (C)	concludes the whole essay or one of the main ideas
Other (O)	doesn't fit into the above elements or makes no meaningful contribution

Table 1: Definitions of discourse elements.

Approach

- Individual classifier for each sentence
- Structure learning: Linear CRF

Position features The relative position of its paragraph (first, last or body) in the essay and its relative position (first, last or body) in the paragraph are modeled as a set of binary features. The index of the sentence is also used as a feature.

Local features

为(in my opinion)" and "总之(in conclusion)" are used as indicators. Partial indicators are adapted from the ones used by Persing et al. (2010). More Chinese specific indicators are then augmented manually. We use a binary feature denoting a reference to the first person ("我(I)","我们(We)") in the sentence. We also use a binary feature to indicate whether the sentence contains a modal verb like "应该(should)" and "希望(hope)".

Lexical features Binary features are modeled for all connectives and adverbs, which are identified based on POS tags.

Topic and prompt features For each sentence, the cosine similarities to the essay title and to the prompt are used as features.

Cohesive Features

- Define cohesive chains
 - Identity chain: NER person, third-person resolution
 - Lexical chain:
 - word2vec → cluster by threshold →
 - add a link chain between sentences that contain words in a cluster
- Distinguish two cohesive chains
 - Local chain: A chain connecting <=2 paragraphs
 - Global chain: >= 3 paragraphs
- Features: # of chains
 - global-identity, global lexical, global lexical, local lexical

Global sentence chains

.....

Paragra	ph	1		.2		3			4		5	
Senten	ice	1	2	3	4	5	6	7	8	9	10	11
	1	<u> </u>		- *	\							
Cohesive	2				<u> </u>							
chains	3											
	4					**********						

Local sentence chains

A chain interaction

More Heuristic Features

- Global-title: (binary)
 - A sentence in a global chain AND Overlap the title?
- Chain interaction (2 binary features)
 - Two chains containing multiple sentences
 - Distinguish between GLOBAL and LOCAL interaction
- Strength features (for a sentence)
 - the number chains, the maximum and average number of covered sentences and paragraphs over chains

Experiments

Element	Features	P	C1 R	F1	P	C2 R	F1	P	C3 <i>R</i>	F1	$avg. \triangle (F1)$
Introduction	Basic + Cohesion	84.5 87.2	89.6 90.8	86.8 88.8	82.2 85.6	80.7 84.8	81.5 85.2	80.6 87.3	90.1 94.4	85.0 90.6	+3.7
Prompt	Basic + Cohesion	89.7 91.1	86.9 89.2	88.2 90.1	77.2 82.0	69.0 69.1	72.5 74.4	_	_	_	+1.9
Thesis	Basic + Cohesion	76.5 78.3	69.0 73.1	72.4 75.5	69.9 75.4	61.1 63.8	64.9 68.6	73.3 77.3	57.5 68.9	64.0 72.7	+5.1
Main idea	Basic + Cohesion	71.4 75.7	59.1 65.3	64.5 70.0	69.0 73.6	60.9 61.3	64.6 66.8	69.4 75.7	54.0 64.3	60.7 69.4	+5.4
Supporting idea	Basic + Cohesion	86.1 88.0	91.4 92.3	88.6 90.1	83.8 84.2	89.6 91.6	86.6 87.7	83.8 87.7	90.5 92.2	87.0 89.9	+1.8
Conclusion	Basic + Cohesion	87.2 89.1	89.9 91.9	88.4 90.4	85.6 86.0	88.5 90.7	87.0 88.2	88.1 92.1	91.0 94.0	89.5 93.1	+2.2

- CRF > SVM
- What is the baseline? SVM?

Model Analysis

- How is AUC computed?
- To compute AUC, we need a hyperparmeter to balance between P and R

Cohesion Feature	AUC
Global-lexical	0.712
Avg.#paras	0.670
Global-title	0.664
Max.#para	0.659
Global-interaction	0.654
Max.#sents	0.636
Avg.#sents	0.613
#Chains	0.601
Local-title	0.522
Global-identity	0.510
Local-identity	0.481
Local-interaction	0.476
Local-lexical	0.431

Comparing Word Representations for Implicit Discourse Relation Classification

Chloé Braud

ALPAGE, Univ Paris Diderot & INRIA Paris-Rocquencourt 75013 Paris - France chloe.braud@inria.fr

Pascal Denis

MAGNET, INRIA Lille Nord-Europe 59650 Villeneuve d'Ascq - France pascal.denis@inria.fr

- Dataset: Penn Discourse Treebank
- Main finding:

Dense vec > sparse

Relation	Train	Dev	Test
Temporal	665	93	68
Contingency	3,281	628	276
Comparison	1,894	401	146
Expansion	6,792	1,253	556
Total	12,632	2,375	1,046

What special in DRR?

		All w	ords		Head words only				
Representation	Тетр.	Cont.	Compa.	Exp.	Тетр.	Cont.	Compa.	Exp.	
$One ext{-}hot \otimes$	21.14	50.36	34.80	59.43	11.96	43.24	17.30	69.21	
$One ext{-}hot \oplus$	23.04	51.31	34.06	58.96	23.01	49.40	29.23	59.08	
Brown $3,200 \otimes$	20.38	50.95	34.85	61.23	11.98	43.77	16.75	68.76	
Best $Brown \otimes$	15.52	53.85**	30.90	61.87	22.91	45.74	25.83	68.76	
Best $Brown \oplus$	27.96**	49.48	31.19	67.42**	21.84	47.36	27.52	61.38	
Best <i>Embed</i> . \otimes	22.97	52.76**	34.99	61.87	23.88	51.29	30.59	58.59	
Best <i>Embed</i> . \oplus	25.98*	52.50	33.15	60.17	22.48	47.48	29.82	57.45	

	Temporal	Contingency	Comparison	Expansion
System	F1	F1	F1	F1
(Ji and Eisenstein, 2014)	26.91	51.39	35.84	79.91
(Rutherford and Xue, 2014)	28.69	54.42	39.70	70.23
repr. (Rutherford and Xue, 2014) NB	28.05	52.95	37.38	70.23
repr. (Rutherford and Xue, 2014) ME	24.79	53.39	36.46	50.00
$One-hot \otimes all tokens + add.$ features	23.26	54.41	34.34	62.57
Best all tokens only	27.96	53.85	34.99	67.42
Best all tokens + add. features	29.30	55.76	36.36	61.76

The Overall Markedness of Discourse Relations

Lifeng Jin and Marie-Catherine de Marneffe
Department of Linguistics

The Ohio State University
{jin, mcdm}@ling.osu.edu

(Computational psycholinguistics track)

- Continuous relation:
 - E.g., causal, temporal succession, topic succession
- Discontinuous relation:
 - E.g., contradiction

- I was tired, so I drank a cup of coffee. (continuous)
- I drank a cup of coffee but I was still tired. (discontinuous)

Continuity hypothesis:

- Sentences connected by continuous relations are easier to understand than ones connected by discontinuous relations
- The goal of the paper:
 - To propose a measure (markedness) to fit the continuity hypothesis

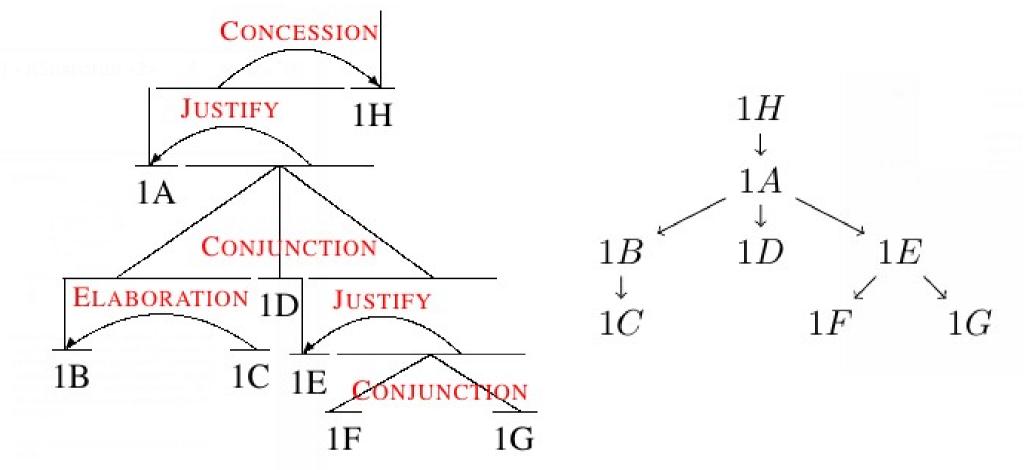
Better Document-level Sentiment Analysis from RST Discourse Parsing*

Parminder Bhatia and Yangfeng Ji and Jacob Eisenstein

School of Interactive Computing Georgia Institute of Technology Atlanta, GA 30308

parminder.bhatia243@gmail.com, jiyfeng@gatech.edu, jacobe@gatech.edu

- Re-weight the contribution of each discourse unit, based on its poistion in a dependency-like representation of the discourse structure
- Recursively propagate sentiment up through the RST parse (like RNN)



[It could have been a <u>great</u> movie] 1A [It does have <u>beautiful</u> scenery,] 1B [some of the <u>best</u> since Lord of the Rings.] 1C [The acting is <u>well</u> done,] 1D [and I really <u>liked</u> the son of the leader of the Samurai.] 1E [He was a <u>likable</u> chap,] 1F [and I hated to see him die.] 1G [But, other than all that, this movie is nothing more than hidden rip-offs.] 1H

Dataset

- Pang and Lee (2004) ~2000 reviews
- Socher et al. (2013) ~50,000 reviews???

Discourse depth reweighting

$$\lambda_i = \max(0.5, 1 - d_i/6)$$

- lambda_i: coefficient; d_i: depth
- The overall prediction

$$\Psi = \sum_i \lambda_i(\boldsymbol{\theta}^\top \boldsymbol{w}_i) = \boldsymbol{\theta}^\top (\sum_i \lambda_i \boldsymbol{w}_i)$$

w_i: BoW vector; theta=1 if postive, -1, if negative

Rhetorical Recursive Neural Network

$$\Psi_i = \tanh(K_n^{(r_i)} \Psi_{n(i)} + K_s^{(r_i)} \Psi_{s(i)})$$

Overall document representation

Long propagation path also addressed in the paper

$$\Psi_{\text{doc}} = \gamma \boldsymbol{\theta}^{\top} (\sum_{i} \boldsymbol{w}_{i}) + \Psi_{\text{rst-root}}$$

Results

	Pang & Lee	Socher et al.
Baselines		
B1. Lexicon	68.3	74.9
B2. Classifier	82.4	81.5
Discourse depth we	ighting	
D1. Lexicon	72.6	78.9
D2. Classifier	82.9	82.0
Rhetorical recursive	e neural netwo	rk
R1. No relations	83.4	85.5
R2. With relations	84.1	85.6

 Lesson: Combining the idea of RNN (or TBCNN) with traditional surface features

One Vector is Not Enough: Entity-Augmented Distributed Semantics for Discourse Relations

TACL

Yangfeng Ji and Jacob Eisenstein School of Interactive Computing Georgia Institute of Technology {jiyfeng, jacobe}@gatech.edu

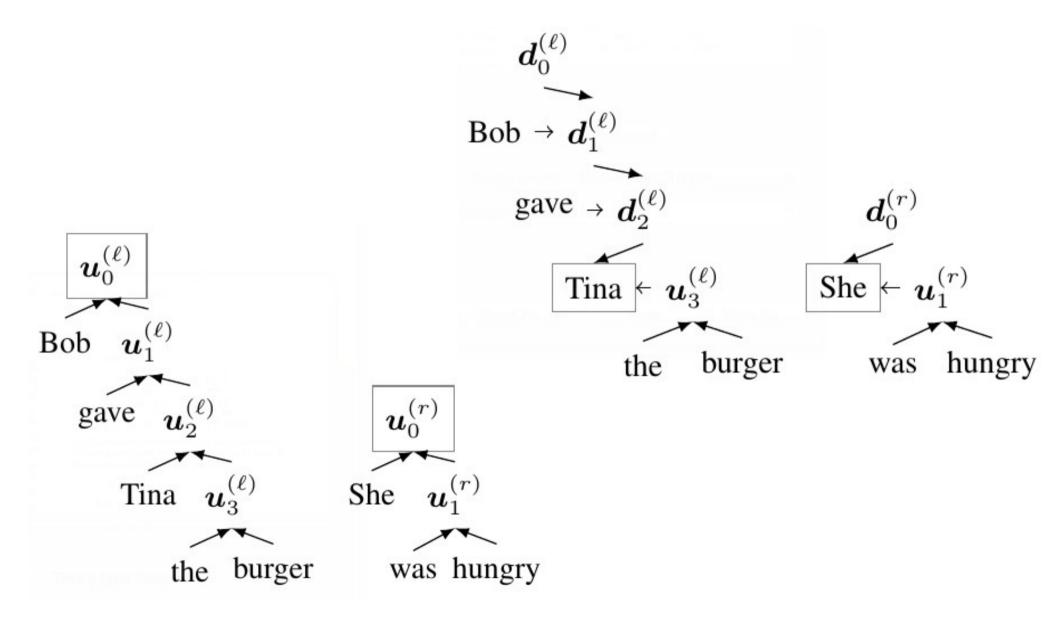
Bob gave Tina the burger.

She was hungry.

Bob gave Tina the burger.

He was hungry.

Architecture



Decision function (scoring function)

$$\psi(y) = (\boldsymbol{u}_0^{(m)})^{\top} \mathbf{A}_y \boldsymbol{u}_0^{(n)} + \sum_{i,j \in \mathcal{A}(m,n)} (\boldsymbol{d}_i^{(m)})^{\top} \mathbf{B}_y \boldsymbol{d}_j^{(n)} + \boldsymbol{\beta}_y^{\top} \boldsymbol{\phi}_{(m,n)} + b_y,$$
(5)

- A(m, n): Aligned entity mentions (Why does it matter?)
- Phi: Surface features
- A, B: Low rank approximation

$$\mathbf{A}_y = \boldsymbol{a}_{y,1} \boldsymbol{a}_{y,2}^{\top} + \operatorname{diag}(\boldsymbol{a}_{y,3})$$

Cost function: Hinge loss

$$\mathcal{L}(\boldsymbol{\theta}) = \sum_{y': y' \neq y^*} \max\left(0, 1 - \psi(y^*) + \psi(y')\right) + \lambda ||\boldsymbol{\theta}||_2^2$$

Closing the Gap: Domain Adaptation from Explicit to Implicit Discourse Relations

Yangfeng Ji Gongbo Zhang Jacob Eisenstein

School of Interactive Computing Georgia Institute of Technology {jiyfeng,gzhang64,jacobe}@gatech.edu

- Explicit relation v.s. Implicit relation
- Weak supervision: Use explicit data to train models for implicit data
- Poor performance: <== linguistically dissimilar (?)
- The goal of this paper: Domain adaption
 - Feature representation learning + Resampling

Learning robust features by Denoising AE

$$\min_{\mathbf{W}} E_{\tilde{\boldsymbol{x}}_i|\boldsymbol{x}_i}[\|\boldsymbol{x}_i - \mathbf{W}\tilde{\boldsymbol{x}}_i\|^2]$$

Features (proposed in previous work)

x_tilde: corrupted features

- Lexical
- Gaussian noise for continuous features
- Syntactic

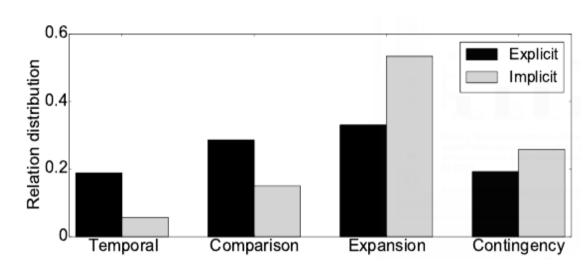
Drop out for binary features

Others

- x: features, ~1e5 dimensions
- W: prohibitively large
 - Trick: kappa pivot features (Blitzer et al., 2006)

Resampling with minimal supervision

Matching the distribution



- Instance weighting
 - Require sampled instance having at least tau-cosine similarity with at least one sample in the target domain

Results

			Relations				
Surface Features	+Rep. Learning	+Resampling	ТЕМР.	Сомр.	EXP.	CONT.	Average F_1
Implicit o Implicit							
1. Full			24.15	28.87	68.84	43.45	41.32
Explicit [PDTB] o Implicit							
2. Full	No	No	17.13	20.54	50.55	36.14	31.04
3. Full	No	Yes	15.38	23.88	62.04	35.29	34.14
4. Full	Yes	No	17.53	22.77	50.85	36.43	31.90
5. Full	Yes	Yes	17.05	22.00	63.51	38.23	35.20
6. PIVOT	No	No	17.33	23.89	53.53	36.22	32.74
7. PIVOT	No	Yes	17.73	25.39	62.65	36.02	35.44
8. PIVOT	Yes	No	18.66	25.86	63.37	38.87	36.69
9. PIVOT	Yes	Yes	19.26	25.74	68.08	41.39	38.62
Explicit [PDTB + CNN] \rightarrow Implicit							
10. PIVOT	Yes	Yes	20.35	26.32	68.92	42.25	39.46

Discourse Planning with an N-gram Model of Relations

Or Biran
Columbia University
orb@cs.columbia.edu

Kathleen McKeown
Columbia University
kathy@cs.columbia.edu

- Generate a comparison story based on an ontology
 - Pattern: "the [predicate(s)] of [subject] (is/are) [object(s)]"
- Main idea: using discourse relations to improve discourse planning
- Evaluation: Crowd-sourced human evalution

Message (Multi-)graph

- Vertex: A message
- Edge: A potential relation
 (annotated according to predicates)

 Goal: To hind a Hamiltonian path through the selected subgraph

N-gram model on relations

$$P(r_i|r_{i-n},...,r_{i-1}) = \frac{C(r_{i-n},...,r_{i-1},r_i)}{C(r_{i-n},...,r_{i-1})}$$

 Choosing the order: 4 messages in total---tractable for even brute force search. The birth place of Allen J. Ellender is Montegut, Louisiana, while the death place of Allen J. Ellender is Maryland. The birth place of Robert E. Quinn is Phoenix, Rhode Island. Subsequently, the death place of Robert E. Quinn is Rhode Island.

The birth place of Allen J. Ellender is Montegut, Louisiana. In comparison, the birth place of Robert E. Quinn is Phoenix, Rhode Island. The death place of Robert E. Quinn is Rhode Island, but the death place of Allen J. Ellender is Maryland.

Figure 1: Sample pair of comparison stories

Results

- Base: random order
- PDTB: n-gram model on PDTB
- Wiki: n-gram model on Wikipedia, annotated by a discourse parser

 Equal: two models are the same in human eval

	Quality comparison			Avg. score		
	Base	Equal	Pdtb	Base	Pdtb	
Of. Holder	27.4%	30.2%	42.5%	3.67	3.76	
TV Show	34.3%	25.7%	40%	3.79	3.8	
Mil. Unit	32.3%	23.2%	44.4%	3.69	3.84	
River	39.2%	23.5%	37.3%	3.71	3.72	
Total	34%	25%	41%	3.72	3.78	

Table 1: Results for the comparison between the PDTB n-gram model and the baseline

	Quality comparison			Avg. score		
	Pdtb	Equal	Wiki	Pdtb	Wiki	
Of. Holder	33.6%	14.5%	51.8%	3.51	3.65	
TV Show	43.2%	8.1%	48.6%	3.62	3.65	
Mil. Unit	40.4%	14.4%	45.2%	3.65	3.67	
River	41.1%	11.2%	47.7%	3.68	3.7	
Total	39.6%	12%	48.4%	3.61	3.67	

A Hierarchical Neural Autoencoder for Paragraphs and Documents

ACL-LONG Jiwei Li, Minh-Thang Luong and Dan Jurafsky

Computer Science Department, Stanford University, Stanford, CA 94305, USA jiweil, lmthang, jurafsky@stanford.edu

Goal: To encode a sentence, and to decode it

ence. While only a first step toward generating coherent text units from neural models, our work has the potential to significantly impact natural language generation and summarization¹.

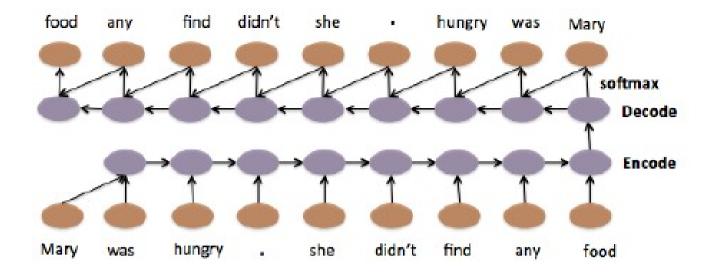


Figure 1: Standard Sequence to Sequence Model.

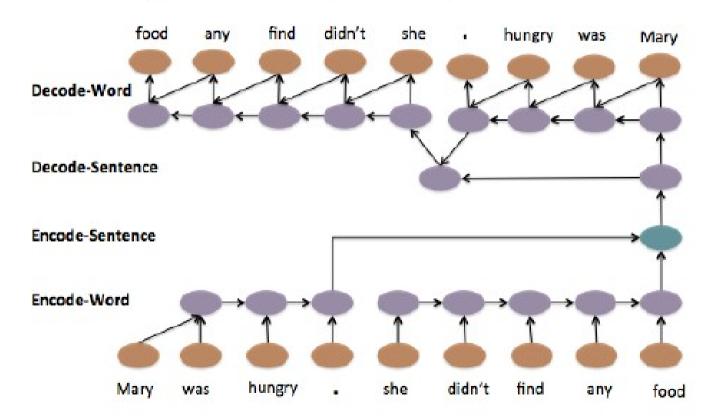
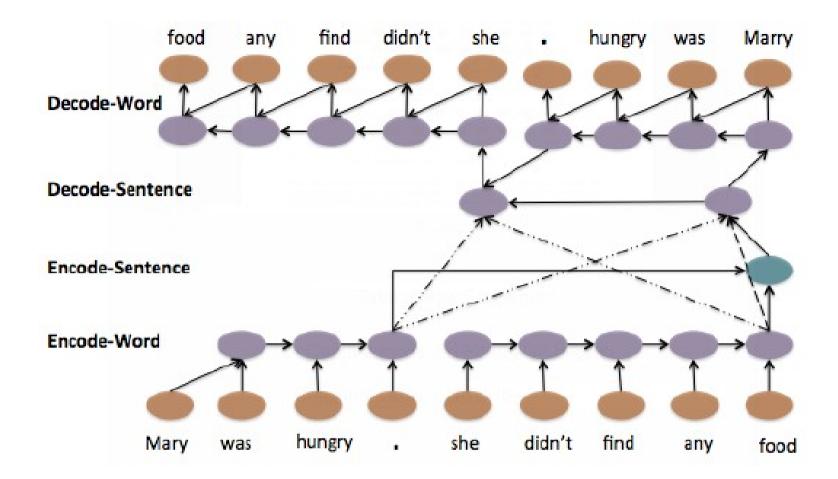


Figure 2: Hierarchical Sequence to Sequence Model.



Evaluation

- BLEU, ROUGE, Coherence

paris is the capital and most populous city of france. situated on the seine river, in the north of the country, it is in the centre of the le-de-france region. the city of paris has a population of 2273305 inhabitants. this makes it the fifth largest city in the european union measured by the population within the city limits.

paris is the capital and most populated city in france. located in the $\langle \text{unk} \rangle$, in the north of the country, it is the center of $\langle \text{unk} \rangle$, paris, the city has a population of $\langle \text{num} \rangle$ inhabitants. this makes the eu's population within the city limits of the fifth largest city in the measurement.

on every visit to nyc, the hotel beacon is the place we love to stay. so conveniently located to central park, lincoln center and great local restaurants, the rooms are lovely, beds so comfortable, a great little kitchen and new wizz bang coffee maker, the staff are so accommodating and just love walking across the street to the fairway supermarket with every imaginable goodies to eat.

every time in new york, lighthouse hotel is our favorite place to stay, very convenient, central park, lincoln center, and great restaurants, the room is wonderful, very comfortable bed, a kitchenette and a large explosion of coffee maker, the staff is so inclusive, just across the street to walk to the supermarket channel love with all kinds of what to eat.

Recursive Deep Models for Discourse Parsing

Jiwei Li¹, Rumeng Li² and Eduard Hovy³

¹Computer Science Department, Stanford University, Stanford, CA 94305, USA
²School of EECS, Peking University, Beijing 100871, P.R. China
³Language Technology Institute, Carnegie Mellon University, Pittsburgh, PA 15213, USA
jiweil@stanford.edu alicerumeng@foxmail.com ehovy@andrew.cmu.edu

- Dataset: Rhetorical Structure Theory Discourse Treebank (RST-DT)
- 385 documents, 347 for training (5-fold), 49 for testing
- Each doc represented as a tree
 - Elementary Discourse Units (EDUs): Clauses
 - Relations: hypotactic v.s. paratactic

EDU Modeling

Standard RAE

Discourse Parsing

- 2-step strategy
 - Binary classifier: To determine whether two adjacent text units should be merged to form a new subtree

$$\begin{split} t_{\text{binary}}(e_1, e_2) &= 1, \ t_{\text{binary}}(e_3, e_4) = 1, \\ t_{\text{binary}}(e_2, e_3) &= 0, \ t_{\text{binary}}(e_3, e_6) = 0, \\ t_{\text{binary}}(e_5, e_6) &= 1 \end{split}$$

$$L_{(e_i, e_j)}^{\text{binary}} &= f(G_{\text{binary}} * [h_{e_i}, h_{e_j}] + b_{\text{binary}}) \qquad \underbrace{\begin{array}{c} \mathbf{r_{56}} \\ \mathbf{e_4} \\ \mathbf{r_{34}} \\ \mathbf{e_3} \end{array}}_{\mathbf{e_1}} \mathbf{e_2} \end{split}$$

$$p[t_{\text{binary}}(e_i, e_j) = 1] = g(U_{binary} \cdot L_{(e_i, e_j)}^{\text{binary}} + b_{\text{binary}}^*)$$

Multi-class classifier: To determine which relation

Inference

- Choose the parse tree with max. prob.
- Dynamic programming, keeping 10 options at each time

Wrap Up

Discourse Analysis

- Document-level classification
 - Traditional document classification → trivial
 - Topic modeling → LDA or variants
 - Document-level sentiment analysis → New research topic
 - Shall we use discourse parse tree structures?
- Discourse relation classification
 - Sentence pair modeling
 - Paraphrase detection
- Discourse parsing (TODO)

TODO list

- Datasets
 - Penn Discourse Treebank
 - IMDB, Yelp
- Discourse parser

– ...