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Probability

Kolmogorov (1933):

I Nonnegative
p(x) ≥ 0,∀x

I Normalized ∑
x

p(x) = 1

I Finitely/countably additive
Let A1, A2, · · · , An be disjoint events,

p
(⋃

Ai

)
=
∑
i

p(Ai)



Interpretations

I The probability that a toss of a coin gives the head

I The probability that it will rain tomorrow

I The probability that the speed of light lies in 2.9–3.1 ×108m/s

I Frequentist The limit of frequency provided that the number
of samples goes to infinity (Recall the Law of Large Numbers)

I Bayesian The degree of ones subjective belief

I Is belief necessarily a kind of probability?
I Is belief admissible in scientific research? or even unavoidable?

“Some even argue that the frequency concept never applies, it being
impossible to have an infinite sequence of i.i.d repetitions of any
situation, except in a certain imaginary (subjective) sense.” [1]
“The subjectivist states his judgements, whereas the objectivist
sweeps them under the carpet by calling assumptions knowledge,
and he basks under the glorious objectivity of science.” (Good,
1973; see also [1].)
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Bifurcation of the Two Schools

We have the data D, and the model, parametrized by Θ.

D ∼ pΘ(·)

What do we take expectation on (for learning, inference, etc)?

Frequentist: D, because there is nothing random about Θ
No random, no cry

Bayesian: Θ, because D is known
Everything unknown is a random variable.

Who is right? Sufficiency + Weak condition ⇒ Bayesian analysis
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Pathologies

“Frequentist statistics exhibits various forms of weird and undesirable
behaviors, known as pathologies.” [2]

I Hypothesis test

I Confidence interval



Hypothesis Test and p-Value

I H0 ↔ H1

I Data D
I Test statistic: f(D)

I p-value(D) = Pr{f(D̃) > f(D)|D̃ ∼ H0}
I Reject H0, if p-value< α

I Cannot reject H0, if p-value≥ α



Tail Area Probability

First peculiar property: Because p-value relies on the tail area
probability, “a hypothesis which may be true may be rejected
because it has not predicted observable results which have not
occurred.” (Jeffreys, 1961; see also [1].)

Who cares about nonoccurrence? But the disaster just begins. . .



Sample size

Assume N (µ, 1)

I H0 : µ = 0↔ H1 : µ 6= 0

I True probability: N (0.2, 1)

I D1 = {0.2}, D2=10000 samples with mean 0.2

Given D1, we cannot reject H0.
Given D2, we do reject H0.

For most scientific problems, the only thing that matters is the
sample size, which is under control of researchers.

“In a recent survey, 58% of researchers admitted to having collected
more data after looking to see whether the results were significant
and 22% admitted to stopping an experiment early because they had
found the result that they were looking for.” (Sanborn et al., 2014)
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Interpretation

I Expected type I (false positive) error rate is at most α

I Nothing is said how ofter you errs when you accept, or reject.

“This is sometimes interpreted as saying that frequentist hypothesis
testing is very conservative, since it is unlikely to accidentally reject
the null hypothesis. But in fact the opposite is the case: because
this method only worries about trying to reject the null, it can never
gather evidence in favor of the null, no matter how large the sample
size. Because of this, p-values tend to overstate the evidence
against the null, and are thus very ‘trigger happy.’ ” [2]

“It seems somewhat nonsensical, however, that we first deliberately
formulate the problem wrong, and then in an ad hoc fashion explain
the final results in more reasonable terms.” [1]
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Confidence Interval

Cα(θ) = (l, u) : Pr{l(D̃) ≤ θ ≤ u(D̃)|D̃ ∼ θ} = 1− α

Counter-intuitive explanation:

I The confidence level (e.g., 95%) is NOT the probability that θ
lies in the interval, given D.

I It is the probability that the interval covers θ if we repeatedly
draw datasets D̃ (in addition to D per se).

I However, we notice that D is KNOWN. Who cares about
nonoccurrence?



Twists and Turns

Pratt (1962):

I An engineer draws a random sample of electron tubes and
measures the plate voltages under certain conditions with a
very accurate voltmeter, accurate enough so that measurement
error is negligible compared with the variability of the tubes.

I A statistician examines the measurements, which look normally
distributed and vary from 75 to 99 volts with a mean of 87 and
a standard deviation of 4. He makes the ordinary normal
analysis, giving a confidence interval for the true mean.



Twists and Turns (2)

I Later he visits the engineer’s laboratory, and notices that the
voltmeter used reads only as far as 100, so the population
appears to be “censored.” This necessitates a new analysis, if
the statistician is orthodox.

I However, the engineer says he has another meter, equally
accurate and reading to 1000 volts, which he would have used
if any voltage had been over 100.

I This is a relief to the orthodox statistician, because it means
the population was effectively uncensored after all.



Twists and Turns (3)

I But the next day the engineer telephones and says, “I just
discovered my high-range voltmeter was not working the day I
did the experiment you analyzed for me.”

I The statistician ascertains that the engineer would not have
held up the experiment until the meter was fixed, and informs
him that a new analysis will be required.

I The engineer is astounded. He says, “But the experiment
turned out just the same as if the high-range meter had been
working. I obtained the precise voltages of my sample anyway,
so I learned exactly what I would have learned if the high-range
meter had been available. Next you’ll be asking about my
oscilloscope.”
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Weak Conditionality

“Suppose a substance to be analyzed can be sent either to a
laboratory in New York or a laboratory in California. The two labs
seem equally good, so a fair coin is flipped to choose between them,
which “heads” denoting that the lab in New York will be chosen.
The coin is flipped and comes up tails, so the California lab is used.
After a while, the experimental results come back and a conclusion
and report must be developed. Should this conclusion take into
account the fact that the coin could have been heads, and hence
that the experiment in New York might have been performed
instead?”

Common sense (and the conditional viewpoint) cries no, that only
the experiment actually performed is relevant, but frequentist
reasoning would call for averaging over all possible data, even the
possible New York data.

Sufficiency + Weak Conditionality Principle ⇒ Bayesian Analysis
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Linear Classification [3]

Assume
p(y = i|x) = σ(wTx)

Given a set of training samples xi, yi, we would like to predict y∗ =?
for a new sample x∗.



Orthodox Frequentists’ Viewpoint

Minimize the expected risk (loss) over x∗
⇓

Minimize the empirical risk over xi, yi (training samples)
⇓

Maximize the likelihood of xi, yi

Maximum likelihood estimation

Training:
w∗ ← arg max

w
p(yi|w,xi)

Predicting:
y∗ ← arg max

y
p(y∗|x∗,w

∗)



Deceitful Frequentists’ Viewpoint

We somehow know that God created the world in a neat manner,
and thus w is small.

We assume that w ∼ N (0, σ) a priori.

We therefore maximize the posterior rather than likelihood.

Training:
w∗ ← arg max

w
p(w|yi,xi)

= arg max
w

p(w)p(yi|w,xi)

Predicting:
y∗ ← arg max

y
p(y∗|x∗;w

∗)

Gaussian prior ⇒ `2 penalty
Laplacian prior ⇒ `1 penalty



Bayesian Learning

I There does not exist w∗.

I Rather, w is a random variable that we have to marginalize
out.

I Predictive density

p(y∗|y) =

∫
dw p(w|y)p(y∗|w)

Warning: Formula menagerie ahead!
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Bayesian Logistic Regression
Let y ∈ {0, 1}m denote the labels of training data φ1, · · · ,φm

Prior p(w), which is a $64,000,000 question

Likelihood

p(y|w) =

m∏
i=1

p(y(i)|w) =

m∏
i=1

σ
(
wTφ(i)

)t(i) (
1− σ

(
wTφ(i)

))1−t(i)

Posterior

p(w|y) =
p(w)p(y|w)

p(y)
∝
w
p(w)p(y|w) = p(w)

m∏
i=1

σ(·)t(i)(1−σ(·))1−t(i)

Predictive density

p(y∗|y) =

∫
dw p(y∗|w) · p(w|y)

∝
y∗

∫
dw σ

(
wTφ∗

)
· p(w)

m∏
i=1

σ(·)t(i)(1− σ(·))1−t(i)
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Intractability

I Posterior is intractable due to the normalizing factor.

I Predictive density is intractable due to the integral.

We have to resort to approximations

I Sampling methods

Stochastic, usually asymptotically correct, hard to scale

I Deterministic methods

“Do things wrongly and hope they work”
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Laplace Approximation
I Fit a Gaussian at a mode
I The standard deviation is chosen such that . . .

the second-order derivative of the log probability matches
, The first-order derivative is always 0 at a mode
, Scale free in representing the unnormalized measure
/ Real variables only
/ Only local properties captured, multi-mode distributions?



Fitting a Gaussian
Let p(z) = 1

Z f(z) be a true distribution, where Z =
∫
f(z) dz

Step 1: Find a mode z0 of p(z), by gradient methods, say, satisfying

df(z)

dz

∣∣∣∣
z=z0

= 0

Step 2: Consider a Taylor expansion of ln f(z) at z0

ln f(z) ' ln f(z0)− 1

2
A(z − z0)2

where A is given by

A = − d2

dz2
ln f(z)

∣∣∣∣
z=z0

Taking the exponential,

f(z) ' f(z0) exp

{
−A

2
(z − z0)2

}
Step 3: Normalize to a Gaussian distribution

q(z) =

(
A

2π

)1/2

exp

{
−A

2
(z − z0)2

}
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Laplace Approximation for Multivariate Distributions
To approximate p(z) = 1

Z f(z), where z ∈ Rm

We expand at mode z0

ln f(z) ' ln f(z0)− 1

2
(z − z0)TA(z − z0)

where A = −∇∇ ln f(z)
∣∣∣
z=z0

, Hessian of ln f(z), serving as the

precision matrix in a Gaussian distribution

Taking the exponential, we obtain

f(z) ' f(z0) exp

{
−1

2
(z − z0)TA(z − z0)

}
Normalize it as a distribution, and then we have

q(z) =
|A|1/2

(2π)m/2
exp

{
−1

2
(z − z0)TA(z − z0)

}
= N (z|z0,A

−1)



Bayesian Logistic Regression: A Revisit in Earnest
Prior: Gaussian, which is natural1

p(w) = N (w|m0,S0)

Posterior: p(w|t) ∝ p(w)p(t|w)

ln p(w|t) =− 1

2
(w −m0)TS−1

0 (w −m0) [prior]

+

m∑
i=1

{
t(i) ln y(i) +

(
1− t(i)

)
ln
(

1− y(i)
)}

[likelihood]

+ const

SN = −∇∇ ln p(w|t) = S−1
0 +

m∑
i=1

y(i)(1− y(i))φnφ
T
n

Hence, the Laplace approximation to the posterior is

q(w) = N (w|wMAP,SN )

1Mathematicians always choose priors for the sake of convenience rather than
approaching God.



Predictive Density

p(C1|φ∗, t) =

∫
p(C1|φ∗,w)p(w|t) dw '

∫
σ(wTφ∗)q(w) dw

p(C2|φ∗, t) = 1− p(C1|φ∗, t)

Plan

I Change it to a univariate integral

I Substitute sigmoid with a probit function, which is then
convolved with a normal∫

σ(·)N (·) d· '
∫

Φ(·)N (·) d· = Φ(·) ' σ(·)



The Dirac Delta Fucntion

Let δ be the Dirac delta function, loosely thought of a function such
that

I Gaussian distribution peaked at 0 with standard deviation → 0

I δ(x) =

{
+∞, if x = 0
0, otherwise

δ function satisfies ∫
δ(a− x)f(a) da = f(x)

and specifically ∫
δ(a− x) da = 1



Deriving the Predictive Density

p(C1|φ∗) '
∫
σ(wTφ∗)q(w) dw [Laplace approx.]

σ(wTφ) =

∫
δ(a−wTφ∗)σ(a) da [Def. of δ]

p(C1|φ∗) =

∫ ∫
δ(a−wTφ)σ(a) da q(w) dw

=

∫ ∫
σ(a)δ(a−wTφ∗)q(w) dw da

∆
=

∫
σ(a)p(a) da

where

p(a)
∆
=

∫
δ(a−wTφ∗)q(w) dw

We now argue that p(a) is Gaussian



Deriving the Predictive Density (2)

p(a) =

∫ ∫
· · ·
∫
δ(a−wTφ∗)q(w) dw1 dw2 · · · dwn

=

∫ ∫
· · ·
∫
q(w̃) dw2 · · · dwn

w̃ is such that w̃Tφ∗ = a

We can also verify that∫
p(a) da =

∫ ∫
δ(a−wTφ∗)q(w) dw da

=

∫ ∫
δ(a−wTφ∗)q(w) dadw

=

∫
q(w) dw

∫
δ(a−wTφ) da

= 1



Deriving the Predictive Density (2)

p(a) =

∫ ∫
· · ·
∫
δ(a−wTφ∗)q(w) dw1 dw2 · · · dwn

=

∫ ∫
· · ·
∫
q(w̃) dw2 · · · dwn

w̃ is such that w̃Tφ∗ = a

We can also verify that∫
p(a) da =

∫ ∫
δ(a−wTφ∗)q(w) dw da

=

∫ ∫
δ(a−wTφ∗)q(w) dadw

=

∫
q(w) dw

∫
δ(a−wTφ) da

= 1



Deriving the Predictive Density (3)

µa = E[a] =

∫
p(a)a da =

∫
q(w)wTφ∗ dw = wT

MAPφ∗

σ2
a = var[a] =

∫
p(a)

{
a2 − E[a]2

}
da

=

∫
q(w)

{
(wTφ)2 − (m2

Nφ)2
}

dw

= φTSNφ

Thus

p(C1|t) '
∫
σ(a)p(a) da =

∫
σ(a)N (a|µa, σ2

a) da

'
∫

Φ(λa)N (a|µa, σ2
a) da = Φ

(
µa

(λ−2 + σ2
a)

1/2

)
' σ

(
κ(σ2

a)µa
)

λ =
√
π/8, κ(σ2

a) = (1 + πσ2
a/8)−1/2, chosen such that the

rescaled probit function has the same slope as sigmoid at the origin.



Hiearchical Bayes

What if we have parameters in the prior?

I Maximum likelihood estimation (Empirical Bayes, Type-II ML)

I Max a posteriori, assuming some prior on the hyper-parameters

I Full Bayesian treatment: Marginalize out all unknown variable!



Take-Home Messages

I Frequentist takes expectation on (known) data while
conditioning on (unknown) θ

I Conditionalist (Bayesian) takes expectation on (unknown) θ
while conditioning on (known) data

I Bayes Hierarchy
I MLE
I Max a posteriori
I Empirical Bayes
I Max a posteriori estimation of hyper-parameters
I Full Bayes

I Bayesian treatment is fundamentally correct by computationally
non-trivial.
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