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Prologue

Linear classification is easy—my good old friend, logistic regression,
always serves as a baseline method in various applications. Through
a systematic study, however, we can grasp the main idea behind a
range of machine learning techniques. This seminar also precedes
our future discussion on GP classification.

References:

The materials basically follow Chapter 4 in Pattern Recognition and
Machine Learning. Figures are taken (w/ or w/o modification)
without further acknowledgment.

See also A. Webb, et al., Statistical Pattern Recognition.



The Linear Classification Problem

The Road Map

I Discriminant functions

I Probabilistic generative models

I Probabilistic discriminative models

I Bayesian logistic regression



On Non-Linearity
Generalized linearity: non-linear transformation by basis functions

I Feature engineering/selection

Kernels: transforming to a Hilbert space, fully characterized by a
predefined “inner-product” operation

I SVM (a discriminant function)
I Gaussian processes (non-parametric Bayes)
I k-NN (slacked similarity measure, non-parametric discriminant)

Composition of non-linear activation functions
I Neural networks (finite feature learning, equivalent to learning

a sophisticated kernel mapping input data to another Euclidean
space)

My questions
I Can neural networks composite infinite dimensional features

(with kernels)?
I Sparse kernel network?
I Or is it necessary? Or indeed, neural networks ARE

non-parametric!
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The Decision Boundary
Let x = (x1, · · · , xn)T be a data sample in Rn
Let y ∈ {0, 1} be the label of x (a two-class problem)
A linear classifier always takes the form

y =

{
1, if wTx+ w0 > 0
0, otherwise

The decision boundary is a hyperplane in Rn−1

wTx+ w0 = 0



Multiclass problem

Let K be the number of classes

I one-versus-the-rest (K − 1 classifiers)

I one-versus-one + voting (K(K − 1)/2 classifiers)

I Scoring
yk(x) = wT

k x+ wk0



Linear Regression as Classiciation
Let the target value be 1-of-K coded. (K: # of classes)
The scoring function is

yk(x) = wT
k x+ wk0

The least square objective function

J =

m∑
i=1

K∑
k=1

(
yk(x

(i))− t(i)
)2

The problem of being “too correct”—the target value is too far
away from a Gaussian distribution.



Perception Learning Algorithm
Non-linear hard squashing function

y =

{
1, if wTx+ w0 > 0
−1, otherwise

Perception learning algorithm
For each misclassified sample x(i):

w(τ+1) = w(τ) + ηx(i)t(i)

For its convergence theorem, please refer to Neural Networks and
Machine Learning.

Pros and Cons

+ Cares about mis-classified samples only

− Does not work with linearly inseparable data

− Does not generalize to multi-class problems

+ Introduces non-linear activation function



Fisher’s Linear Discriminant

Heuristics:

I Attempt #1: Maximize the class separation

I Attempt #2 (the Fisher criterion):
Maximize the ratio of the between-class variance to the
within-class variance (after projecting to a one-dimensional
space, perpendicular to the decision boundary)



Formalization of Fisher’s Linear Discriminant

Between-class variance

m1 =
1

N1

∑
i∈C1

x(i), m2 =
1

N2

∑
i∈C2

x(i)

Within-class variance

s2
k =

∑
i∈Ck

(
y(i) −mk

)2

where
yn = wTxn

The cost function

J(w) =
wT (m2 −m1)

s2
1 + s2

2



Solution to Fisher’s Linear Discriminant

J(w) =
wT (m2 −m1)

s2
1 + s2

2

=
wTSBw

wTSww

where

SB = (m2 −m1)(m2 −m1)T

SW =
∑
i∈C1

(xi −m1)(xi −m1)T +
∑
i∈C2

(xi −m2)(xi −m2)T

Differentiating the cost function and setting it to 0, we obtain

(wSBw)SWw = (wTSWw)SBw

Thus
w ∝ S−1

W (m2 −m1)

See Pattern Recognition and Machine Learning for multi-class
scenarios.
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A Probabilistic Model

A data (x, y) is generated according to the following story

Step 1: Choose a box Ck, i.e., t = k, with probability p(Ck)
Step 2: Draw a ticket x from box k with probability p(x|Ck)

The Bayesian network
(t) −→ (x)

Posterior probability

p(C1|x) =
p(x|C1)p(C1)

p(x|C1)p(C1) + p(x|C2)p(C2)

=
1

1 + exp(−a)

∆
= σ(a)

where

a = ln
p(x|C1)p(C1)

p(x|C2)p(C2)
= ln

p(C1|x)

p(C2|x)



Multi-class Scenarios

Softmax

p(Ck|x) =
p(x|Ck)p(Ck)∑
j p(x|Cj)p(Cj)

Predicting the class label

t̂ = argmax
k

p(Ck|x)



Generative Models v.s. Discriminative Models

Training objectives
maximize

Θ
p(x, t; Θ)

i.e.,
maximize

Θ
p(x|t; Θ)p(t; Θ)

v.s.
maximize

Θ
p(t|x; Θ)



Gaussian Inputs

Assumption

p(x|Ck) =
1√

(2π)n|Σ|
exp

{
−1

2
(x− µk)TΣ−1(x− µ)

}
Consider a binary classification problem

p(C1|x) = σ(wTx+ w0)

where

w = Σ−1(µ1 − µ2)

w0 = −1

2
µT1 Σ

−1µ1 +
1

2
µT2 Σ

−1µ2 + ln
p(C1)

p(C2)

Parameter estimation: Maximum likelihood estimation

See also Ch 2.3, 2.4 in Statistical Pattern Recognition.



Gaussian Classifiers

Shared covariance matrix Σ ⇒ Linear decision boundary

Different Σk ⇒ Quadratic decision boundary

Warning: Don’t use Gaussian Classifiers



Discrete Features

Consider binary features x = (x1, · · · , xn)T , where xi ∈ {0, 1}.

p(x|Ck) has 2n − 1 independent free parameters

Näıve Bayes assumption: xi independent

p(x|Ck) =

n∏
i=1

p(xi|Ck) =

n∏
i=1

µxiki(1− µki)
1−xi

Posterior class distributions

p(Ck|x) = σ(ak(x))

ak(x) =

n∑
i=1

{xi lnµki − (1− xi) ln(1− µki)}+ ln p(Ck)

Linear in features x!



Exponential Family

Let class-conditional distributions take the form

p(x|λk) = h(x)g(λk) exp
{
λTku(x)

}
Binary classification

a(x) = (λ1 − λ2)Tx+ ln g(λ1)− ln g(λ2) + ln p(C1)− ln p(C2)

Multi-class problem

ak(x) = λTk x+ ln g(λk) + ln p(Ck)

Examples: Normal, exponential, log-normal, gamma, chi-squared,
beta, Dirichlet, Bernoulli, categorical, Poisson, geometric, inverse
Gaussian, von Mises, and von Mises-Fisher. Provided some
parameters are fixed, Pareto, binomial, multinomial, and negative
binomial are also in the exponential family.
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Logistic Regression

Under rather general assumptions, the posterior class distribution
takes the form

y(x)
∆
= p(C1|x) = σ(wTx+ w0)

The idea is to optimize directly the above posterior distribution.
⇒ Fewer parameters, better performance.

Consider a binary classification problem with n-dimensional feature
space

I Logistic regression: n parameters
I A Gaussian classifier:

+ Means: 2n
+ Covariance matrices (shared): n(n+ 1)/2
+ Class prior: 1



Probit Regression
What if we substitute σ with other squashing functions?

Probit function

Φ(a) =

∫ a

−∞
N (θ|0, 1) dθ

I Similar performance compared with logistic regression

I More prone to outliers (Why? Consider the decay rate^ )

I Useful later
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Bayesian Learning
Let y ∈ {0, 1}m denote the labels of training data φ1, · · · ,φm
Prior p(w), which is a $64,000,000 question

Likelihood

p(y|w) =

m∏
i=1

p(y(i)|w) =

m∏
i=1

σ
(
wTφ(i)

)t(i) (
1− σ

(
wTφ(i)

))1−t(i)

Posterior

p(w|y) =
p(w)p(y|w)

p(y)
∝
w
p(w)p(y|w) = p(w)

m∏
i=1

σ(·)t(i)(1−σ(·))1−t(i)

Predictive density

p(y∗|y) =

∫
dw p(y∗|w) · p(w|y)

∝
y∗

∫
dw σ

(
wTφ∗

)
· p(w)

m∏
i=1

σ(·)t(i)(1− σ(·))1−t(i)



Intractability

I Posterior is intractable due to the normalizing factor.

I Predictive density is intractable due to the integral.

We have to resort to approximations

I Sampling methods

Stochastic, usually asymptotically correct, hard to scale

I Deterministic methods

“Do things wrongly and hope they work”



Laplace Approximation
I Fit a Gaussian at a mode
I The standard deviation is chosen such that . . .

the second-order derivative of the log probability matches
, The first-order derivative is always 0 at a mode
, Scale free in representing the unnormalized measure
/ Real variables only
/ Only local properties captured, multi-mode distributions?



Fitting a Gaussian
Let p(z) = 1

Z f(z) be a true distribution, where Z =
∫
f(z) dz

Step 1: Find a mode z0 of p(z), by gradient methods, say, satisfying

df(z)

dz

∣∣∣∣
z=z0

= 0

Step 2: Consider a Taylor expansion of ln f(z) at z0

ln f(z) ' ln f(z0)− 1

2
A(z − z0)2

where A is given by

A = − d2

dz2
ln f(z)

∣∣∣∣
z=z0

Taking the exponential,

f(z) ' f(z0) exp

{
−A

2
(z − z0)2

}
Step 3: Normalize to a Gaussian distribution

q(z) =

(
A

2π

)1/2

exp

{
−A

2
(z − z0)2

}



Laplace Approximation for Multivariate Distributions
To approximate p(z) = 1

Z f(z), where z ∈ Rm

We expand at mode z0

ln f(z) ' ln f(z0)− 1

2
(z − z0)TA(z − z0)

where A = −∇∇ ln f(z)
∣∣∣
z=z0

, Hessian of ln f(z), serving as the

precision matrix in a Gaussian distribution

Taking the exponential, we obtain

f(z) ' f(z0) exp

{
−1

2
(z − z0)TA(z − z0)

}
Normalize it as a distribution, and then we have

q(z) =
|A|1/2

(2π)m/2
exp

{
−1

2
(z − z0)TA(z − z0)

}
= N (z|z0,A

−1)



Bayesian Logistic Regression: A Revisit in Earnest
Prior: Gaussian, which is natural1

p(w) = N (w|m0,S0)

Posterior: p(w|t) ∝ p(w)p(t|w)

ln p(w|t) =− 1

2
(w −m0)TS−1

0 (w −m0) [prior]

+

m∑
i=1

{
t(i) ln y(i) +

(
1− t(i)

)
ln
(

1− y(i)
)}

[likelihood]

+ const

SN = −∇∇ ln p(w|t) = S−1
0 +

m∑
i=1

y(i)(1− y(i))φnφ
T
n

Hence, the Laplace approximation to the posterior is

q(w) = N (w|wMAP,SN )

1Mathematicians always choose priors for the sake of convenience rather than
approaching God.



Predictive Density

p(C1|φ∗, t) =

∫
p(C1|φ∗,w)p(w|t) dw '

∫
σ(wTφ∗)q(w) dw

p(C2|φ∗, t) = 1− p(C1|φ∗, t)

Plan

I Change it to a univariate integral

I Substitute sigmoid with a probit function, which is then
convolved with a normal∫

σ(·)N (·) d· '
∫

Φ(·)N (·) d· = Φ(·) ' σ(·)



The Dirac Delta Fucntion

Let δ be the Dirac delta function, loosely thought of a function such
that

I Gaussian distribution peaked at 0 with standard deviation → 0

I δ(x) =

{
+∞, if x = 0
0, otherwise

δ function satisfies ∫
δ(a− x)f(a) da = f(x)

and specifically ∫
δ(a− x) da = 1



Deriving the Predictive Density

p(C1|φ∗) '
∫
σ(wTφ∗)q(w) dw [Laplace approx.]

σ(wTφ) =

∫
δ(a−wTφ∗)σ(a) da [Def. of δ]

p(C1|φ∗) =

∫ ∫
δ(a−wTφ)σ(a) da q(w) dw

=

∫ ∫
σ(a)δ(a−wTφ∗)q(w) dw da

∆
=

∫
σ(a)p(a) da

where

p(a)
∆
=

∫
δ(a−wTφ∗)q(w) dw

We now argue that p(a) is Gaussian



Deriving the Predictive Density (2)

p(a) =

∫ ∫
· · ·
∫
δ(a−wTφ∗)q(w) dw1 dw2 · · · dwn

=

∫ ∫
· · ·
∫
q(w̃) dw2 · · · dwn

w̃ is such that w̃Tφ∗ = a

We can also verify that∫
p(a) da =

∫ ∫
δ(a−wTφ∗)q(w) dw da

=

∫ ∫
δ(a−wTφ∗)q(w) dadw

=

∫
q(w) dw

∫
δ(a−wTφ) da

= 1



Deriving the Predictive Density (3)

µa = E[a] =

∫
p(a)a da =

∫
q(w)wTφ∗ dw = wT

MAPφ∗

σ2
a = var[a] =

∫
p(a)

{
a2 − E[a]2

}
da

=

∫
q(w)

{
(wTφ)2 − (m2

Nφ)2
}

dw

= φTSNφ

Thus

p(C1|t) '
∫
σ(a)p(a) da =

∫
σ(a)N (a|µa, σ2

a) da

'
∫

Φ(λa)N (a|µa, σ2
a) da = Φ

(
µa

(λ−2 + σ2
a)

1/2

)
' σ

(
κ(σ2

a)µa
)

λ =
√
π/8, κ(σ2

a) = (1 + πσ2
a/8)−1/2, chosen such that the

rescaled probit function has the same slope as sigmoid at the origin.



Φ(·) ∗ φ(·) = Φ(·)

Let X ∼ N (a, b2) and Y ∼ N (c, d2)

Pr{X ≤ Y } =

∫ ∞
−∞

Pr{X ≤ Y |Y = w}φ
(
w − c
d

)
dw

=

∫ ∞
∞

Pr{X ≤ w}φ
(
w − c
d

)
dw

=

∫ ∞
∞

Φ

(
w − a
c

)
φ

(
w − c
d

)
dw

By noticing that

X − Y ∼ N (a− c, b2 + d2)

We have

Pr{X ≤ Y } = Pr{X − Y ≤ 0}

= Φ

(
−a+ c√
b2 + d2

)



Take-Home Messages

I Discriminant functions

I Probabilistic generative models (don’t use it)

I Probabilistic discriminative models
I Bayesian logistic regression

q Sampling methods
Z Deterministic approximations
I Laplace approximation (fitting a Gaussian at a mode)
I Substitute the sigmoid function with a probit function
I Analytical solutions
I The decision boundary is the same with equal prior probabilities



Thanks for Listening!
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