Classifying Relations via Long Short Term Memory Networks along Shortest Dependency Paths

<u>Yan Xu</u>, Lili Mou, Ge Li, Yunchuan Chen, Hao Peng, Zhi Jin Sep 21, 2015

Institute of Software, School of EECS, Peking University

Outline

- Overview of Relation Extraction 4
- 2. Linguistic Phenomenon Related to Relation Extraction
- 3. Deep Neural Networks
 - > Multi-Channel Long Short Term Memory Networks
 - Regularization: Dropout
- 4. Experiments
- 5. Conclusions

Information Extraction

A trillion gallons of water have been poured into an empty region of outer space.

Named Entity Recognition

A trillion gallons of [water]e1 have been poured into an empty [region]e2 of outer space.

Relation Classification

Entity-Destination ([water]e₁, [region]e₂)

SemEval 2010 Task 8 - Dataset

- Evaluation Exercises on Semantic Evaluation ACL
 SigLex event
- Tasks 8 Multi-Way Classification of Semantic Relations Between Pairs of Nominals

Training data

- 8000 training samples
 - The system as described above has its greatest application in an arrayed <e1>configuration</e1> of antenna <e2>elements</e2>.
 - Component-Whole(e2, e1)

Testing data

2717 testing samples

SemEval 2010 Task 8 - Relations

- (1) Cause-Effect
- (2) Instrument-Agency
- (3) Product-Producer
- (4) Content-Container
- (5) Entity-Origin

- (6) Entity-Destination
- (7) Component-Whole
- (8) Member-Collection
- (9) Message-Topic
- (10) Other

Outline

- 1. Overview of Relation Extraction
- 2. Linguistic Phenomenon Related to Relation Extraction
- 3. Deep Neural Networks
 - > Multi-Channel Long Short Term Memory Networks
 - Regularization: Dropout
- 4. Experiments
- 5. Conclusions

Motivation

Which type of sentence structures can be more appropriate ?

Which type of linguistic information can be incorporated ?

Dependency Parse Tree

Shortest Dependency Path (SDP)

Directionality

Dependency trees are a kind of directed graph

The entities' relation distinguishes its directionality

Subpath1: [water]e1 \rightarrow of \rightarrow gallons \rightarrow poured

Subpath2: poured < into < [region]e2

Info 1: Word Representations

Word Embeddings

Word2vec – map a word to a real-valued vector capturing word's syntactic and semantic information (Mikolov, NIPS' 2013)

Toy example

- Average embeddings + SVM \rightarrow nearly 79% F1-score

Info 2: POS tags

Ally each word in the path with its POS tag

Take a coarse-grained POS category heuristically

```
[["NN", "NNS", "NNP", "NNPS"], # noun, proper noun, singular, plural
["IN"], # Preposition or subordinating conjunction
 ["VBN"], # verb, past participle
 ["VBD"], # verb, past tense
 ["VBZ"], # verb, present tense, 3rd person singular
 ["VBG"], # verb, present participle or gerund
 ["VBP"], # verb, present tense, not 3rd person singular
 ["VB"], # verb, base form
 ["TO"], # to
 ["JJ", "JJR", "JJS"], # adj
 ["RB", "RBR", "RBS"], # adv
                 # cardinal number
["CD"],
 ["DT", "PDT"], # determiner
 ["PRP"].
                      # personal pronoun
["RP"]]
                      # particle
```

Info 3: Grammatical Relations

A grammatical relation expresses the dependency between a governing word and a dependent word

Some grammatical relations reflect semantic relation strongly. like "*nsubj*", "*dboj*", or "*pobj*", etc

In our experiments, grammatical relations are grouped into 19 classes, mainly based on the category proposed by De Marneffe in LREC' 2006

Info 4: Hypernyms

With the prior knowledge of hypernyms, we know that "water is a kind of substance."

This is a hint that the entities, water and region, are more of "Entity-Destination" relations than other relation like "Communication-Topic", "Cause-Effect", etc.

 With the help of <u>supersensetagger</u> (Ciaramita, EMNLP' 06)

Outline

- 1. Overview of Relation Extraction
- 2. Linguistic Phenomenon of Relation Extraction
- 3. Deep Neural Networks
 - > Multi-Channel Long Short Term Memory Networks
 - Regularization: Dropout
- 4. Experiments
- 5. Conclusions

Recurrent Neural Network

The recurrent neural network is suitable for modeling sequential data by nature.

Weight matrices for the input connections

$$\boldsymbol{h}_t = f(W_{in}\boldsymbol{x}_t + W_{rec}\boldsymbol{h}_{t-1} + \boldsymbol{b}_h)$$

Weight matrices for the recurrent connections

Gradient vanishing

Long Short Term Memory Networks

Long Short Term Memory Networks

$$\boldsymbol{i}_t = \sigma(W_i \cdot \boldsymbol{x}_t + U_i \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_i)$$
(1)

$$\boldsymbol{f}_t = \sigma(W_f \cdot \boldsymbol{x}_t + U_f \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_f)$$
(2)

$$\boldsymbol{o}_t = \sigma(W_o \cdot \boldsymbol{x}_t + U_o \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_o) \tag{3}$$

$$\boldsymbol{g}_t = \tanh(W_g \cdot \boldsymbol{x}_t + U_g \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_g) \quad (4)$$

$$\boldsymbol{c}_t = \boldsymbol{i}_t \otimes \boldsymbol{g}_t + \boldsymbol{f}_t \otimes \boldsymbol{c}_{t-1}$$
(5)

$$\boldsymbol{h}_t = \boldsymbol{o}_t \otimes \tanh(\boldsymbol{c}_t) \tag{6}$$

Framework of SDP-LSTM

Framework of SDP-LSTM

Dropout strategies

Randomly omitting

Dropout strategies

Randomly omitting

Omitting VS Memorizing

- Dropout different types of neural network layers respectively.

$$\boldsymbol{i}_t = \sigma(W_i \cdot D(\boldsymbol{x}_t) + U_i \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_i)$$
(7)

$$\boldsymbol{f}_t = \sigma(W_f \cdot D(\boldsymbol{x}_t) + U_f \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_f)$$
(8)

$$\boldsymbol{o}_t = \sigma(W_o \cdot D(\boldsymbol{x}_t) + U_o \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_o)$$
(9)

$$\boldsymbol{g}_t = \tanh \left(W_g \cdot D(\boldsymbol{x}_t) + U_g \cdot \boldsymbol{h}_{t-1} + \boldsymbol{b}_g \right) \quad (10)$$

Training Objective

Penalized cross-entropy error

Outline

- 1. Overview of Relation Extraction
- 2. Linguistic Phenomenon Related to Relation Extraction
- 3. Deep Neural Networks
 - > Multi-Channel Long Short Term Memory Networks
 - Regularization: Dropout
- 4. Experiments 🗶
- 5. Conclusions

Effect of Dropout Strategies

(a) Dropout word embeddings

Effect of Dropout Strategies

Effect of Dropout Strategies

Effects of Different Channels

Channel effects

Channels	F_1
Word embeddings	82.35
+ POS embeddings (only)	82.98
+ GR embeddings (only)	83.21
+ WordNet embeddings (only)	83.03
+ POS + GR + WordNet embeddings	83.70

Traditional recurrent neural network: 82.8%

LSTM over one path: 82.2%

Comparison

Classifier	Feature set	F_1
SVM	POS, WordNet, prefixes and other morphological features,	
	depdency parse, Levin classes, PropBank, FanmeNet,	82.2
	NomLex-Plus, Google n-gram, paraphrases, TextRunner	
RNN	Word embeddings	74.8
	Word embeddings, POS, NER, WordNet	77.6
MVRNN	Word embeddings	79.1
	Word embeddings, POS, NER, WordNet	82.4
CNN	Word embeddings	69.7
	Word embeddings, word position embeddings, WordNet	82.7
Chain CNN	Word embeddings, POS, NER, WordNet	82.7
FCM	Word embeddings	80.6
	Word embeddings, depedency parsing, NER	83.0
CR-CNN	Word embeddings	82.8†
	Word embeddings, position embeddings	82.7
	Word embeddings, position embeddings	84.1 [†]
SDP-LSTM	Word embeddings	82.4
	Word embeddings, POS embeddings, WordNet embeddings,	837
	grammar relation embeddings	03.7

New Mission Impossible

86 % ?

Outline

- 1. Overview of Relation Extraction
- 2. Linguistic Phenomenon Related to Relation Extraction
- 3. Deep Neural Networks
 - > Multi-Channel Long Short Term Memory Networks
 - Regularization: Dropout
- 4. Experiments
- 5. Conclusions

Conclusions

- Classifying relation is a challenging task due to the inherent ambiguity of natural languages and the diversity of sentence expression
- The shortest dependency path can be a valuable resource for relation classification
- Treating the shortest dependency path as two sub-paths helps to capture the directionality
- LSTM units are effective in feature detection and propagation along the shortest dependency path

Thanks! Q&A