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Introduction: Human-Computer Conversation Systems

Human-Computer Conversation

Human-computer conversation has long attracted interest in both
academia and industry.

Task/Domain-oriented systems

Open-domain conversation systems
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Introduction: Human-Computer Conversation Systems

Task/Domain-Oriented Dialog Systems

Transportation domain: TRAIN-95 [Ferguson et al., 1996]

Education: AutoTutor [Graesser et al., 2005]

Restaurant booking [Wen et al., 2016]

Approaches:

Planning

Rule-based, Slot-filling, etc.
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Introduction: Human-Computer Conversation Systems

Open-Domain Conversation

Why is chatbot-like conversation important?

Tackles the problem of natural language understanding and
generation

Commercial needs

Approaches:

Retrieval-based systems [Isbell et al., 2000, Wang et al., 2013]

Generative systems

Phrase-based machine translation [Ritter et al., 2011]
Neural networks (seq2seq models) [Shang et al., 2015]
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Introduction: Human-Computer Conversation Systems

Where are we?

Open-domain, neural network-based, generative short-text
conversation

Lili Mou et al. (Peking University) seq2BF for Generative Dialog Systems



seq2BF for Generative Dialog Systems

Approach: seq2BF Model

Outline

1 Introduction: Human-Computer Conversation Systems

2 Approach: seq2BF Model

3 Experimental Results

4 Conclusion: Related Work

Lili Mou et al. (Peking University) seq2BF for Generative Dialog Systems



seq2BF for Generative Dialog Systems

Approach: seq2BF Model

Sequence-to-Sequence Model

Encode-decoder framework

Encode a user-issued query as a vector

Decode it as an utterance

   where  are    you    from                    I      am   from  Osaka

   I    am   from  Osaka Japan

Other applications:

Machine translation

Summarization

etc
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Approach: seq2BF Model

But the problem is. . .

Meaningless and universally relevant replies

Example in a previous study (in English) [Li et al., 2016]

Q: How come you never say it?
Q: How much time do you have here?
R: “I don’t know”

Our scenario (in Chinese)

我也是 (Me too)
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Approach: seq2BF Model

Why?

The query does not convey sufficient information.

A query may having multiple appropriate replies.

Universally relevant utterances appear (slightly) more
frequently than other replies

Conversation is different than translation.
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Approach: seq2BF Model

Multi-Modality

Query: What are you going to do?

Candidate replies:

Origin

Take a walk
Have something 
to eat

I don't know
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Approach: seq2BF Model

Solutions

Diversity-promoting objective function [Li et al., 2016]

Origin

Take a walk Have something 
to eat

I don't know

Variational encoding the source [Serban et al., 2016]

Origin

Take a walk Have something 
to eat

I don't know

Sample a random variable from a 
distribution, which encodes source 
information
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Approach: seq2BF Model

Our Intuition

Some words in the utterance are highly correlated with the
source.

- Thank you
- You’re welcome

Predict a keyword first, and generate a reply containing the
keyword

A “sequence to backward and forward sequences” model
accomplishes this goal.
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Approach: seq2BF Model

The View from Multi-Modality

Origin

Take a walk Have something 
to eat

I don't know

Predict a keyword externally

walk
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Approach: seq2BF Model

Overview

 osaka

   where  are    you    from                   osaka  from    am      I

    from    am       I     <eos>

   where  are    you    from             I      am   from  osaka  japan

japan <eos>

(a) Keyword prediction

Step II
seq2BF 
model

Step I
PMI statistics

where
are
you

from

Query                                           Reply

PMI

(b) Backward sequence

(c) Forward sequence
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Approach: seq2BF Model

Keyword Predictor

Computing the point-wise mutual information (PMI):

PMI(wq, wr) = log
p(wq, wr)

p(wq)p(wr)
= log

p(wq|wr)

p(wq)

Prediction
w∗r = argmax

wr

PMI(wq1 · · ·wqn , wr)

where

PMI(wq1 · · ·wqn , wr) = log
p(wq1 · · ·wqn |wr)

p(wq1 · · ·wqn)

≈ log

∏n
i=1 p(wqi |wr)∏n
i=1 p(wqi)

=

n∑
i=1

log
p(wqi |wr)

p(wqi)
=

n∑
i=1

PMI(wqi , wr)
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Approach: seq2BF Model

seq2BF Model

Traditional language models (sentence generators) start from the
first word and generate following words in sequence.

p(r1, · · · , rm|q) = p(r1|q)p(r2|r1, q) · · · p(rm|r1 · · · rm−1, q)

=

m∏
i=1

p(ri|r1 · · · ri−1, q)

The seq2BF model generates previous and future words
conditioned on a given word.

p

(
rk−1 · · · r1
rk+1 · · · rm

∣∣∣∣∣rk, q
)

=
k−1∏
i=1

p(bw)(rk−i|rk, q, ·)
m−k∏
i=1

p(fw)(rk+i|rk, q, ·)
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Approach: seq2BF Model

Details

Asynchronously generating the two sequences

First the backward half

Then the forward half conditioned on the backward half
sequence

Training:

Randomly choose a word as the keyword, splitting an
utterance into two subsentences

⇒ “half” language model
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Experimental Results

Datasets and Settings

A Chinese conversation dataset containing up to 500k
query-reply pairs

RNNs are in character level, but keyword prediction is in
phrase level.

Embeddings and the hidden layer: 500-dimensional

Rmsprop, generally default hyperparameters
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Experimental Results

Evaluation Metrics

Attempt#1: BLEU scores (0 BLEU-2 score by one annotator)
(Abandoned)

Attempt#2: Human evaluation

Pointwise annotation

Pairwise annotation

Attemp#3: Intrinsic metric (entropy)

− 1

|R|
∑
w∈R

log2 p(w)
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Experimental Results

Results

Method PointHuman Length Entropy

seq2seq 0.58 5.61 6.960
seq2BF− 0.46 5.60 6.971
seq2BF+ 0.67 5.31 9.139
Groundtruth – 9.19 8.832

PairHuman
Method Wins Ties Loses

seq2seq 24.7 26.0 49.3
seq2BF+ 49.3 26.0 24.7
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Experimental Results

Examples

Chinese English (translated)
Query 李有男友公开过了 It’s known that Li† has a boyfriend.

Grountruth 都已经分了 之前李的贴吧都在讨论了 Broken up. There’s discussion in her Tieba.‡

seq2seq 我是男的 I am a male
seq2BF− 我的男友 My boyfriend
seq2BF+ 有绯绯绯闻闻闻男友 Has a rumored boyfriend

Query 人大复试飘过 Passed second-round exam of Renming Univ.
Grountruth 这么牛，什么专业 Cool, what’s your major
seq2seq 我也是！ Me too!
seq2BF− 我也是！ Me too!
seq2BF+ 分分分数数数是什么 What is your score

Query 挺漂亮的 祝福祝福 So beautiful, congratulations
Grountruth 下手慢了哈。现在 You’re late till now
seq2seq 我是你的头像 I’m in your photo
seq2BF− 我是你的头像 I’m in your photo
seq2BF+ 第一张图图图像像像是谁 Who is in your first photo
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Experimental Results

Additional Analysis

Entropy

Model seq2seq seq2BF−
seq2BF+

keyword remaining

Entropy 6.960 6.971 11.630 7.422

Length [Mou et al., 2015]
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Conclusion: Related Work

Conclusion

Origin

Take a walk
Have something 
to eat

I don't know

Topic-augmenting [Xing et al., 2016]

Combination of retrieval and generative dialog
systems [Song et al., 2016]

Lili Mou et al. (Peking University) seq2BF for Generative Dialog Systems



seq2BF for Generative Dialog Systems

Conclusion: Related Work

Conclusion

Thank you for listening!
Q & A
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Conclusion: Related Work
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