Sequence to backward and forward sequences: A content-introducing approach to generative short-text conversation

Lili Mou,¹ Yiping Song,² Rui Yan,³ Ge Li,¹ Lu Zhang,¹ Zhi Jin¹

¹Institute of Software ²Institute of Network Computing and Information Systems ³Institute of Computer Science and Technology

School of EECS, Peking University, P. R. China

COLING, Osaka, Japan December, 2016

Outline

1 Introduction: Human-Computer Conversation Systems

2 Approach: seq2BF Model

- 3 Experimental Results
- 4 Conclusion: Related Work

-Introduction: Human-Computer Conversation Systems

Outline

1 Introduction: Human-Computer Conversation Systems

2 Approach: seq2BF Model

3 Experimental Results

4 Conclusion: Related Work

Introduction: Human-Computer Conversation Systems

Human-Computer Conversation

Human-computer conversation has long attracted interest in both academia and industry.

- Task/Domain-oriented systems
- Open-domain conversation systems

Introduction: Human-Computer Conversation Systems

Task/Domain-Oriented Dialog Systems

- Transportation domain: TRAIN-95 [Ferguson et al., 1996]
- Education: AutoTutor [Graesser et al., 2005]
- Restaurant booking [Wen et al., 2016]

Approaches:

- Planning
- Rule-based, Slot-filling, etc.

Introduction: Human-Computer Conversation Systems

Open-Domain Conversation

Why is chatbot-like conversation important?

- Tackles the problem of natural language understanding and generation
- Commercial needs

Approaches:

- Retrieval-based systems [Isbell et al., 2000, Wang et al., 2013]
- Generative systems
 - Phrase-based machine translation [Ritter et al., 2011]
 - Neural networks (seq2seq models) [Shang et al., 2015]

Introduction: Human-Computer Conversation Systems

Where are we?

Open-domain, neural network-based, generative short-text conversation

Approach: seq2BF Model

Outline

1 Introduction: Human-Computer Conversation Systems

2 Approach: seq2BF Model

3 Experimental Results

4 Conclusion: Related Work

Sequence-to-Sequence Model

Encode-decoder framework

- Encode a user-issued query as a vector
- Decode it as an utterance

Other applications:

- Machine translation
- Summarization

etc

Approach: seq2BF Model

But the problem is...

Meaningless and universally relevant replies

Example in a previous study (in English) [Li et al., 2016]

- Q: How come you never say it?
- Q: How much time do you have here?
- R: "I don't know"
- Our scenario (in Chinese)
 - 我也是 (Me too)

Why?

- The query does not convey sufficient information.
- A query may having multiple appropriate replies.
- Universally relevant utterances appear (slightly) more frequently than other replies

Conversation is different than translation.

Query: What are you going to do?

Candidate replies:

Solutions

Our Intuition

- Some words in the utterance are highly correlated with the source.
 - Thank you
 - You're welcome
- Predict a keyword first, and generate a reply containing the keyword
- A "sequence to backward and forward sequences" model accomplishes this goal.

Approach: seq2BF Model

The View from Multi-Modality

Overview

Lili Mou et al. (Peking University) seq2BF for Generative Dialog Systems

Keyword Predictor

Computing the point-wise mutual information (PMI):

$$PMI(w_q, w_r) = \log \frac{p(w_q, w_r)}{p(w_q)p(w_r)} = \log \frac{p(w_q|w_r)}{p(w_q)}$$

Prediction

$$w_r^* = \operatorname*{argmax}_{w_r} \operatorname{PMI}(w_{q_1} \cdots w_{q_n}, w_r)$$

where

$$PMI(w_{q_1} \cdots w_{q_n}, w_r) = \log \frac{p(w_{q_1} \cdots w_{q_n} | w_r)}{p(w_{q_1} \cdots w_{q_n})}$$
$$\approx \log \frac{\prod_{i=1}^n p(w_{q_i} | w_r)}{\prod_{i=1}^n p(w_{q_i})} = \sum_{i=1}^n \log \frac{p(w_{q_i} | w_r)}{p(w_{q_i})} = \sum_{i=1}^n PMI(w_{q_i}, w_r)$$

seq2BF Model

Traditional language models (sentence generators) start from the first word and generate following words in sequence.

$$p(r_1, \cdots, r_m | \boldsymbol{q}) = p(r_1 | \boldsymbol{q}) p(r_2 | r_1, \boldsymbol{q}) \cdots p(r_m | r_1 \cdots r_{m-1}, \boldsymbol{q})$$
$$= \prod_{i=1}^m p(r_i | r_1 \cdots r_{i-1}, \boldsymbol{q})$$

The seq2BF model generates previous and future words conditioned on a given word.

$$p\left(\frac{r_{k-1}\cdots r_1}{r_{k+1}\cdots r_m} \cdot \left| r_k, \boldsymbol{q} \right) = \prod_{i=1}^{k-1} p^{(\mathsf{bw})}(r_{k-i}|r_k, \boldsymbol{q}, \cdot) \prod_{i=1}^{m-k} p^{(\mathsf{fw})}(r_{k+i}|r_k, \boldsymbol{q}, \cdot)$$

Details

Asynchronously generating the two sequences

- First the backward half
- Then the forward half conditioned on the backward half sequence
- Training:
 - Randomly choose a word as the keyword, splitting an utterance into two subsentences
- \Rightarrow "half" language model

Experimental Results

Outline

1 Introduction: Human-Computer Conversation Systems

2 Approach: seq2BF Model

3 Experimental Results

4 Conclusion: Related Work

Datasets and Settings

- A Chinese conversation dataset containing up to 500k query-reply pairs
- RNNs are in character level, but keyword prediction is in phrase level.
- Embeddings and the hidden layer: 500-dimensional
- Rmsprop, generally default hyperparameters

Evaluation Metrics

Attempt#1: BLEU scores (0 BLEU-2 score by one annotator) (Abandoned)

Attempt#2: Human evaluation

- Pointwise annotation
- Pairwise annotation

Attemp#3: Intrinsic metric (entropy)

$$-\frac{1}{|R|}\sum_{w\in R}\log_2 p(w)$$

Results

Method	PointHuman	Length	Entropy
seq2seq	0.58	5.61	6.960
seq2BF_	0.46	5.60	6.971
${\tt seq2BF}_+$	0.67	5.31	9.139
Groundtruth	-	9.19	8.832

PairHuman				
Method	Wins	Ties	Loses	
seq2seq	24.7	26.0	49.3	
${\tt seq2BF_+}$	49.3	26.0	24.7	

Examples

	Chinese	English (translated)
Query	李有男友公开过了	It's known that Li^{\dagger} has a boyfriend.
Grountruth	都已经分了之前李的贴吧都在讨论了	Broken up. There's discussion in her <i>Tieba</i> . [‡]
seq2seq	我是男的	l am a male
seq2BF_	我的男友	My boyfriend
$seq2BF_+$	有绯闻男友	Has a rumor ed boyfriend
Query	人大复试飘过	Passed second-round exam of Renming Univ.
Grountruth	这么牛,什么专业	Cool, what's your major
seq2seq	我也是!	Me too!
seq2BF_	我也是!	Me too!
$seq2BF_+$	分数是什么	What is your score
Query	挺漂亮的 祝福祝福	So beautiful, congratulations
Grountruth	下手慢了哈。现在	You're late till now
seq2seq	我是你的头像	I'm in your photo
seq2BF_	我是你的头像	I'm in your photo
seq2BF ₊	第一张图像是谁	Who is in your first photo

Additional Analysis

Entropy

Model	seq2seq	seq2BF_	$\mathtt{seq2BF}_+$	
			keyword	remaining
Entropy	6.960	6.971	11.630	7.422

Length [Mou et al., 2015]

Conclusion: Related Work

Outline

1 Introduction: Human-Computer Conversation Systems

2 Approach: seq2BF Model

3 Experimental Results

4 Conclusion: Related Work

Conclusion: Related Work

Conclusion

- Topic-augmenting [Xing et al., 2016]
- Combination of retrieval and generative dialog systems [Song et al., 2016]

Conclusion: Related Work

Conclusion

Thank you for listening! Q & A

Conclusion: Related Work

Conclusion: Related Work

Ritter, A., Cherry, C., and Dolan, W. B. (2011). Data-driven response generation in social media. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, pages 583–593.

Serban, I. V., Sordoni, A., Lowe, R., Charlin, L., Pineau, J., Courville, A., and Bengio, Y. (2016).

A hierarchical latent variable encoder-decoder model for generating dialogues. *arXiv preprint arXiv:1605.06069*.

Shang, L., Lu, Z., and Li, H. (2015).

Neural responding machine for short-text conversation.

In Proceedings of the 53rd Annual Meeting of the Association for Computational Linguistics and the 7th International Joint Conference on Natural Language Processing, pages 1577–1586.

Song, Y., Yan, R., Li, X., Zhao, D., and Zhang, M. (2016).

Two are better than one: An ensemble of retrieval-and generation-based dialog systems.

arXiv preprint arXiv:1610.07149.

Wang, H., Lu, Z., Li, H., and Chen, E. (2013). A dataset for research on short-text conversations. In *Proceedings of the Conference on Empirical Methods in Natural Language Processing*, pages 935–945.

Wen, T.-H., Gasic, M., Mrksic, N., Rojas-Barahona, L. M., Su, P.-H., Ultes, S., Vandyke, D., and Young, S. (2016).
A network-based end-to-end trainable task-oriented dialogue system. arXiv preprint arXiv:1604.04562.

Xing, C., Wu, W., Wu, Y., Liu, J., Huang, Y., Zhou, M., and Ma, W.-Y. (2016). Topic augmented neural response generation with a joint attention mechanism. *arXiv preprint arXiv:1606.08340.*

