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Neural Generative Question Answering
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“He 1s 2.29m and visible from space”
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Neural QA: Interpreter

e Interpreter: Bi-RNN over the query
h; = [hy; x¢)

“He is 2.29m and visible from space”
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Neural QA: Enquirer

o Interpreter: h, = [hy; x;]

* Enquirer:  S(Q,7) = h,Mu,

hg : Avg pooling of h

“He is 2.29m and visible from space”

________________

1
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u: embedding of the
tuple (sum of subject &

s predicate)
 MASREEEY: m—- M: parameters

Short-term Memory

Interpreter

“How tall is Yao Ming?”
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Normalized score (over 50  ¢S(Q@,7k)
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Neural QA: Answerer

* Interpreter: n, = [hy; x/]
* Enquirer:  S(Q,7) = h,Mu,
« Answerer: RNN generator w/ attent.

“He is 2.29m and visible from space”

e z

; . plyr. - yroHo.rq:i0) = p(yn[Ho xq: ) | [ p(weln, - ve-1. Ha, xa:6)

: : =2

s S ﬁ_- Prob. that the word is  _s(Q,7x)
Short-term Memory generated from KB Dot e (@ Tpr)

p(yelsi; 0) = p(z = Olsi; 0)p(unfsi, 0;6) + p(zr = Lsi; 0)p(yilst, 1;0)

I
“How tall is Yao Ming?” Prob. that the word is generated by RNN w/ attent.



Table 3: Training and test accuracies

Models

Training | Test

Retrieval-based

A0%, 369

NRME

159, 199,

GENQA

465 AT%

Questions

Answers generated by GENQA

S L HEE Y

Who wrote the Romance of the Three Kingdoms?

A = L
Of course 1t 1s Luoc Guanzhong who wrote it.

1B 5 el [ N Y 5
Which country does Xiang Yu belong to? King of the Chu State.
NFR YR A Y -4k244F

How many episodes does My Fair Princess have

? | 24 episodes in total.
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NEURAL ENQUIRER: Learning to Query Tables with Natural
Language

Disclaimer: Details
may vary.
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Athens (probability distribution over entries)

Szl es] Select host_city of r2

Executor-3
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/ = Executor-2

— [ocytor-1

query embedding

query Q

| \—

Memory Layer-1

table embedding

Find r2 in R with max(#_duration)
Memory Layer-3 ‘ Find row sets R where year < a
Memory Layer-2 ‘ Select year of ri1 as a

‘ Find row ri where host_city=Beijing

oD

Which city hosted the longest Olympic game before the game in Beijing?

logical form F

1Tk

where year<(select year, where host_city=Beijing),
argmax(host_city, # duration)

year | host_city | #_duration | #_medals
2000 | Sydney 20 2,000
2004 | Athens as 1,500
2008 | Beijing 30 2,500
2012 | Lendon 40 2,300




Query Encoder

query embedding

query Q

Which city hosted the longest Olympic game before the game in Beijing?

logical form F

where year<(select year, where host_city=Beijing),
argmax(host_city, # duration)




Table Encoder

table embedding
T T OO T OO T O T T year | host _city | #_duration | #_medals
(LTI 1] Ol Crrij 2000 | Sydney 20 2,000
1110|0111 11T 2004 | Athens 35 1,500
O 111 01111 OO 1] 2008 | Beijing 30 2.500
EEEEEEEEEE N EEEEE
2012 London 40 2,300

query embedding

(LTI

Which city hosted the longest Olympic game before the game in Beijing?

logical form F

where year<(select year, where host_city=Beijing),
argmax(host_city, # duration)




Executor

Athens (probability distribution over E*ntrie.l

S Wl ok Select host_city of r2

Find r2

Executor-3 Memory Layer-3 Find row

Executor-2

N

Memory Layer-2 Select y

W —

=W ] Memory Layer-1 Find row
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query embedding

table embedding [duation] #_medass
query Q 20 2,000
Which city h OTTT A TTTTLL LR ET ’
logical form ﬁl - 30 2,500
where year<(select year, where host_city=Beijing), 2012 | London 40 2,300

argmax(host_city, #_ duration)




Query Encoder

» BiLSTM for query (Q) parsing  h: = z:h, 1 + (1 — z)h,
h, = tanh(Wx; + U(r; o h; 1))
z; = o(W.x, + U.h;_4)
r; = o(W,x; +U,h;_)

* Logical form (F) appears to
be used for supervision only

query embedding

(CIIITIIIIII
query Q *

Which city hosted the longest Olympic game before the game in Beijing?

logical form F

where year<(select year, where host_city=Beijing),
argmax(host_city, # duration)




Table Encoder

* Vector representation of each entry

(a function of the entry and the field)

Cmn — DNNH([L [Tﬂm;ﬂ]; fﬂ]} — taﬂh(w ’ [L[“}Tﬂ_ﬂ]; fn] + b)

table embedding

EEEEEE EEEEEE EEEEEE|EEEEEE year | host_city | # duration | # medals
O | O | O | e 2000 | Sydney 20 2,000
1117 OO0 | O111 | (1117 2004 | Athens 35 1,500
DR | O | O (| T 2008 | Beijing 30 2,500
110|110 |00 O]

2012 London 40 2,300




Executor

» Reader: To obtain a vector representation of a row

e Annotator:;
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Executor
* Reader: To obtain a vector representation of a row

* Annotator: To obtain yet another vector representation
Read Vector: I‘fn = 5 (R, Fr, q, M1
Row Annotation: a.‘fn = f_f(rfm q. Mf_l}

query embedding

table annotation (layer(-1)

m"™ row annotation (layer ()

—( 1 [ [ 11]
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Executor->Reader
Read Vector: i, fH(Rfmer q, M) « Select a column in
thy = fe(Rums Fryqy M*™) Z* I each entry

n=—1

exp(w(f, g.8°1))

Gt a8 = =5
Zn":l exp{"“'(fﬂ": q. gf_l })

w(+) is modeled as a DNN (denoted as DNNEEJ}
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Executor->Row Annotator

* More complex
iInformation mix

), = fi(rh,, a, M71) = DNNY ([rf; qs aly "))
than Reader

query embedding

table annotation (layer/(-1) .
M row annotation (layer [ )

= [ [T 111}

th :
m  row annotation (layer(-1)

read vector (layer )

| think Reader and Annotator are
compensatory to some extent, e.g.,
a 2-D attention mechanism (see
Latent Predictor Network)




Executor->Table Annotator
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How Is the table annotation used?

5 executors (predefined) ~ * For intermediate layers (1--4), g
Is stored in memory, and used

when computing the next
layer's Reader

Athens (probability distribution over entries)
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Training Objective

 End-to-end learning (N2N) ﬁu-m{ﬂ}=flagmym=-wm|cz'i”1ﬁh
 Step-by-step learning (SbS)

Np g
Lsps(D) =Y [log p(y'") = wmn|QW, TW) + o) " logw(fi,, -,-)]
i=1 =1

Athens (probability distribution over entries)

# Select host_city of r2

.
m_—_ Find rZ2 in & with max(#_duration)

M—. Memory Layer-3 Find row sets K where year < g
| )

Ill ---.---'-\._
M—o Memory Layer-2 Select year of rl as a

| ',I',';I--- e

Memory Layer-1 Find row rl where host_city=Beijing




Experimental Setups

 Synthetic dataset containing 4 types of queries generated by templates

N.B. Natural Language with Templates <==> Formal language w/ or w/o ambiguity

Neural Enquirer is a kind of Pseudo Compiling
Our synthetic dataset consists of query-table-answer triples {(Q), 7V, y()}. To generate
such a triple, we first randomly sample a table 7)) of size 10 x 10 from a synthetic schema

of Olympic Games, which has 10 fields, whose values are drawn from a vocabulary of size

=3

240, with 120 country and city names, and 120 numbers. Figure |5 gives an example table
with one row. Next, we generate a query Q") using predefined templates associated with its

gold-standard answer y(i} on T,

Query Type

Example Queries with Annotated SQL-like Logical Forms

SELECT_WHERE

> (1
Fi:
> (J2
Fo:

: How many people participated in the game in Beijing?
select #_participants, where host_city = Beijing
. In which country was the game hosted in 2012%
select host_country, where year = 2012

SUPERLATIVE

> (Ja:

Fiy:

B (Ja:

Fq_:

When was the lastest game hosted?
argmax (host_city, year)

How big is the country which hosted the shortest game?
argmin(country_size, #_duration)

WHERE_SUPERLATIVE

LY

Fr:

B (Jg:

Fy:

How long is the game with the most medals that has fewer than 3,000 participants?
where #_participants < 3,000, argmax(#_duration, #_medals)

How many medals are in the first game after 2008¥¢

where #_year > 2008, argmin(#_medals, #_year)

NEST

[= Q?:

F5:

> Qg

Fy:

Which country hosted the longest game before the game in Athens?
where year< (select year,where host_city=Athens),argmax(host_country,# duration)
How many people watched the earliest game that lasts for more days than the game in 19567
where #_duration< (select #_duration,where year=1956),argmin(#_audience,#_year)




Quantitative Results

(Baseline) MixTuRED-25K MixTURED- 100K
SEMPRE N2N Shis N2N - OOV NZN Sh N2ZN - OOV
SELECT_W HERE 93.87 06.27%  99.79% 90.3% 09.3%  100.0% 07.67%
SUPERLATIVE 97.8% 98.9% 99.5% 98.2% 99.9% 100.0% 99.7%
WHERE_SUPERLATIVE 34.8% 80.4% 094.3% 79.1% O8.5% 99.8% us.0%
NEST 34.4% 60.5%  92.1% 57.7% 64.7%  99.7% 63.9%

Overall Acc. 65.2% 84.0% 06.4% 81.3% 00,6 99.9% 59.8%




Qualitative Analysis

QQ5: How long is the game with the most medals that has fewer than 3,000 participants?
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Qs: How many people watched the earliest game that lasts for more days than the game in 19567
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Figure 8: Weights visualization of query Qg (an incorrectly answered query)
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Incorporating Copying Mechanism in Sequence-to-Sequence Learning

Jiatao Gu’ Zhengdong Lu* Hang Li* Victor O.K. Li'
"Department of Electrical and Electronic Engineering, The University of Hong Kong
{jiataogu, vli}@eee.hku.hk
*Huawei Noah’s Ark Lab, Hong Kong
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I: Hello Jack, my name is Chandralekha.

R: Nice to meet you, Chandralekha.

I: This new guy doesn’t perform exactly
as we expected.
R: What do you mean by "doesn’t perform

exactly as we expected"?




p(YelSe; Ys—1, ¢, M) = p(ye, 9lSe, Ye—1, ¢, M)

_l_;‘r}(yhc|s.f:yf—l:chM) {4}

where g stands for the generate-mode, and c the
copy mode. The probability of the two modes are
given respectively by

p(ye, gl )=¢

p(yﬂ: C| ')=<

where ¥,(-)

| %E%{yt}: y €V
0, y € XNV (5
|
i EE’.T“':-‘?(U”KJ Yt g V L X
; J_ .
_ Welzj)
7 Zj:;::j =1t € 5 Yt € X (6)

0 otherwise

and 1.(-) are score functions for

generate-mode and copy-mode, respectively, and
Z 1s the normalization term shared by the two |[t's very hard to determine which

modes, Z = 3, cyiquniy €77 + Zuex €¥°”). one is better than another.

S: state
M: {h1, .. ht}, i.e., source's states
C: input context

(w/ attent.)

Cf. conditional probability
Micro avg. vs. Macro avg.

Cf: softmax w/ multiple input
Mean field approximation



p(yi|5£: Yt—1, Cy, M) = p(yf:g|5£: yﬂ—l':EIrM)

where g stands for the generatq

copy mode. The probability of | ;oo W, € RV+HD%ds and v, is the one-hot in-
given respectively by

p(ye, gl-) =1

+ p(Ye, clse, Y1, ¢, M) (4)
Yoy = v;) = v;rwﬂsh v; € VUUNK (7)

dicator vector for v;.

p(yi: E| ')=<

where 14(-)

| %Ewg{m}: e B vW: weight matrix indexed by word |
0. s EXNTV 5) S: h|dde.n state | |

— Nothing but linear transformation
! EEI'UQ{UHKJ yi % V U X
1 .

_ Welxj)

z Zj:;r:j =1yt eresy 7 Yt €X (6}

0 otherwise

and 1.(-) are score functions for

generate-mode and copy-mode, respectively, and
Z 1s the normalization term shared by the two

modes, Z =

2 vevu{uk ﬁ‘_*""’i"“_’j + Y e X.ETF&(:I:}.



p(ye|se, yr—1. ¢, M) = p(y;,d Copy-Mode:  The score for “copying” the word
+ p(ye, c|sy,| Ti is calculated as

by, = 2;) = o hTW,_..)s, i EeX (8
where g stands for the generate Vet i) ( j et J (8)

50 dy % ds . .
copy mode. The probability of { Where W, € R%*%, and o is an activation
that is either an identity or a non-linear function

given respectively by
such as tanh. When calculating the copy-mode

: lﬁ-a,.::.g{m;.‘ score, we use the hidden states {h,,....hp } to
VA ’ “represent” each of the word in the source se-
Py, 9l-)=S ) U, quence {1, ..., rTg } since the bi-directional RNN
— ¢¥g(UNK) encodes not only the content, but also the location
%4 information into the hidden states in M.

- J_ .

_ T.“r:{i")

7 i & MEX (g
0 otherwise

p(yt, c|-)=

%

where 1)4(-) and .(:) are score functions for
generate-mode and copy-mode, respectively, and
Z 1s the normalization term shared by the two

modes, Z = ZwEVU{UMK} g¥alith Z;;:EX g¥el®),



State Update (Input)
e le(yi-1);C(we-1)]'

* ¢(): embedding of a word

T
e zeta(): C(ye—1) = Z;l pirhr
(1

Ptr = 3 E}”

K= ZT’::}:T;:yg_l p(m’?"? C‘Si—lﬁ M)

| don't see formal definition of p, but it shall be similar to attent.
Ts

If the last word is copied from x_t

(.'fq-—, Clst—l: M) Lr = Yt—-1

0 otherwise

En(Et—l 3h’?‘}

Ct — Z C}ffTth pr — Z ,- En[st_l,hfr)
+t €



State Update (Input)
Local-based Addressing (good for OOV)

.« [e(ye-1);C(ye-1)]"
update Pmdiﬂ} n sel. read Clyy)

e ¢(): embedding of a word Clyoy) 29

Is
» zeta(): C(ye1) =) pechs

1 If the last word is copied from x_t
s B 4 = P(z7,Clst-1, M), 27 =y

b,

K= ZT’:mT;:yt_l p(ﬂfTI, C‘Sf*—l? M)

0 otherwise



Learning

» End-to-end fashion

il
= 7 2 3 s o, X )
k=1 t=1



Discussion

* Designing highly (more and more) complicated neural
networks to mimic human behaviors: modeling a sentence,
querying a table/KB, selecting a field/column, selecting a
row, copying something, etc.)

* The network has been somewhat over-complicated; it is
very hard to judge which part actually contributes to the
performance.

o Evaluation is oftentimes weak: synthetic data, subjective
evaluation, or criterion not clear (e.g., genQA), etc.

* Nevertheless, an important school of DL4NLP.



A Wider Scope

Learning to Execute

Neural Programmer

Neural Program Interpreter

Latent Predictor Network for Code Generation

Challenge of end-to-end learning:

— Information processing

avg sum  max  attention argmax
Differentiability =~ © © ©@ © B
Supervision @ @ ® 6 B
Scalability B & @)




Intuition

o Using external information to guide an NN instead of designing
end-to-end machines
— Better performance in short term
— May or may not conform to the goal of Al,
depending on how strict the external information is

Hard mechanism (e.g., if-statement)

Differentiability =~ @

Supervision @)

Scalability @)
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