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Variational Autoencoder (VAE)

Kingma and Welling (2013)
A combination of (neural) autoencoders and variational inference

Compared with traditional variational inference

Takes use of neural networks as a powerful density estimator

Compared with traditional autoencoders

Imposes a probabilistic distribution on latent representations
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Why VAE?

Learns the distribution of data

Instead of the MAP sample
Implicitly capture the diversity of data

Generating samples from scratch

Image generation, sentence generation, etc.
Controlling the generated samples

⇒ Not quite feasible in deterministic AE

Regularization
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Variational Encoder-Decoder (VED)

Encoder-decoder frameworks
Machine translation
Dialog systems
Summarization

VAE ⇒ VED (Variational encoder-decoder)
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VAE/VED in NLP

Seq2Seq models as encoders & decoders

Attention mechanism serving as dynamic alignment

However, we observe the bypassing phenomenon
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Our Proposal

Variational attention mechanism

Modeling attention probability/vector as random variables
Imposing some prior and posterior distributions over attention

Experimental results show that the variational space is more
effective when combined with variational attention.
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Variational Inference

Z Hidden variables

Y Observable variables

log pθ(y(n)) = Ez∼qφ(z|y(n))

[
log

{
pθ(y(n), z)

qφ(z|y(n))

}]
+ KL(qφ(z|y(n))‖p(z|y))

≥ Ez∼qφ(z|y(n))

[
log pθ(y(n)|z)

]
−KL

(
qφ(z|y(n))‖p(z)

)
∆
= L(n)(θ,φ)

loss = E[reconstruction loss] + KL divergence
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Variational Autoencoder

loss = E[reconstruction loss] + KL divergence

Prior
p(z) = N (0, I)

Posterior
qφ(z|y) = N (µ,diag{σ})

where µ,σ = NN(y)
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Variational Encoder-Decoder

Encoder-Decoder: Transforming X to Y

Attempt#1: Condition any distribution on X
(Zhang et al., 2016; Cao and Clark, 2017; Serban et al., 2017)

Doubts:

The posterior contains Y
Cannot have fine-grained (word/character-level) variational
modeling
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Variational Encoder-Decoder

Encoder-Decoder: Transforming X to Y

Attempt#2 (Cao and Clark, 2017):
Assuming Y is some function of X i.e., Y = Y (X), then
q(z|y) = q(z|Y (x)) = q̃(z|x)
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Attention Mechanism

At each step of decoding

Attention probability

αji =
exp{α̃ji}∑|x|
i′=1 exp{α̃ji′}

Attention vector

aj =

|x|∑
i=1

αjih
(src)
i

(Bypassing phenomenon)
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Bypassing Phenomenon

A deterministic connection bypasses variational space

Hidden state initialization:

Input: the men are playing musical instruments

(a) VAE w/o hidden state init. (Avg entropy: 2.52)

the men are playing musical instruments
the men are playing video games
the musicians are playing musical instruments
the women are playing musical instruments

(b) VAE w/ hidden state init. (Avg entropy: 2.01)

the men are playing musical instruments
the men are playing musical instruments
the men are playing musical instruments
the man is playing musical instruments
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Intuition

General idea: Model attention as random variables
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Lower Bound

L(n)
j (θ,φ)

=Ez,a∼qφ(z,a|x(n))

[
log pθ(y(n)|z,a)

]
−KL

(
qφ(z,a|x(n))‖p(z,a)

)
=E

z∼q(z)φ (z|x(n)),a∼q(a)φ (a|x(n))

[
log pθ(y(n)|z,a)

]
−KL

(
q

(z)
φ (z|x(n))‖p(z)

)
−KL

(
q

(a)
φ (a|x(n))‖p(a)

)
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Prior

Standard norm: p(aj) = N (0, I)

Norm centered at h̄(src):

p(aj) = N (h̄(src), I)

where h̄(src) = 1
|x|
∑|x|

i=1 h
(src)
i
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Posterior

Attention probability

αji =
exp{α̃ji}∑|x|
i′=1 exp{α̃ji′}

Attention vector

a
(det)
j =

|x|∑
i=1

αjih
(src)
i

Posterior: N (µaj ,σaj ), where

µaj ≡ adetj , σaj = NN(adetj )
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Training Objective

J (n)(θ,φ) = Jrec(θ,φ,y
(n))

+ λKL

[
KL
(
q

(z)
φ (z)‖p(z)

)
+ γa

|y|∑
j=1

KL
(
q

(a)
φ (aj)‖p(aj)

) ]
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Geometric Interpretation

(a)                                         (b)                                      (c)                                      (d)
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Task

Question generation (Du et al., 2017)

Given some information (a sentence), to generate a related
question

Dataset from the Stanford Question Answering Dataset
(Rajpurkar et al., 2016, SQuAD)
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Settings

KL-annealing: logistic schema

Word dropout: 25%

Hyperparaemters tuned on VAE and adopted to all VED models
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Overall Performance

,

Model Inference BLEU-1 BLEU-2 BLEU-3 BLEU-4 Entropy Dist-1 Dist-2

DED (w/o Attn) Du et al. (2017) MAP 31.34 13.79 7.36 4.26 - - -

DED (w/o Attn) MAP 29.31 12.42 6.55 3.61 - - -
DED+DAttn MAP 30.24 14.33 8.26 4.96 - - -

VED+DAttn
MAP 31.02 14.57 8.49 5.02 - - -

Sampling 30.87 14.71 8.61 5.08 2.214 0.132 0.176

VED+DAttn (2-stage training)
MAP 28.88 13.02 7.33 4.16 - - -

Sampling 29.25 13.21 7.45 4.25 2.241 0.140 0.188

VED+VAttn-0
MAP 29.70 14.17 8.21 4.92 - - -

Sampling 30.22 14.22 8.28 4.87 2.320 0.165 0.231

VED+VAttn-h̄
MAP 30.23 14.30 8.28 4.93 - - -

Sampling 30.47 14.35 8.39 4.96 2.316 0.162 0.228
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Learning Curves

.
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Effect of γa

J (n)(θ,φ) = Jrec(θ,φ,y
(n))

+ λKL

[
KL
(
q

(z)
φ (z)‖p(z)

)
+γa

|y|∑
j=1

KL
(
q

(a)
φ (aj)‖p(aj)

)]

.
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Case Study

Source when the british forces evacuated at the close of the war in 1783 ,
they transported 3,000 freedmen for resettlement in nova scotia .

Reference in what year did the american revolutionary war end ?

VED+DAttn
how many people evacuated in newfoundland ?
how many people evacuated in newfoundland ?
what did the british forces seize in the war ?

VED+Vattn-h̄
how many people lived in nova scotia ?
where did the british forces retreat ?
when did the british forces leave the war ?

Source downstream , more than 200,000 people were evacuated from
mianyang by june 1 in anticipation of the dam bursting .

Reference how many people were evacuated downstream ?

VED+DAttn
how many people evacuated from the mianyang basin ?
how many people evacuated from the mianyang basin ?
how many people evacuated from the mianyang basin ?

VED+VAttn-h̄
how many people evacuated from the tunnel ?
how many people evacuated from the dam ?
how many people were evacuated from fort in the dam ?
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Conclusion

Our work

Address the bypassing phenomenon

Propose a variational attention

Future work

Probabilistic modeling of attention probability

Lesson learned

Design philosophy of VAE/VED
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Thanks for listening

Question?
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