
 
Sampling and Stochastic Search 

 for Sentence Generation 

Lili Mou

doublepower.mou@gmail.com


lili-mou.github.io

mailto:doublepower.mou@gmail.com
http://lili-mou.github.io


RNN Generation

The book is

<SOS>

<EOS>interesting

The book is interesting



RNN Generation

Question: Can we generate a sentence right-to-left?

The book is

<SOS>

<EOS>interesting

The book is interesting



• Information bottleneck


• Error cumulation

- Due to sampling or incompetency of the RNN

Issues with Single Directional 
Generation

The book is

<SOS>

<EOS>interesting

The book is interesting

movie …



Generation by Local Changes

• Suppose we have a blueprint

The book is <EOS>interesting



Generation by Local Changes

The book is <EOS>interesting

• Suppose we have a blueprint

This

The book is <EOS>interesting



Generation by Local Changes

The book is <EOS>interesting

• Suppose we have a blueprint

This

quite

The book is <EOS>interesting



Generation by Local Changes

The book is <EOS>interesting

• Suppose we have a blueprint

This

quite

fascinating

The book is <EOS>interesting



Applications

• Paraphrase generation


- “Sample” a sentence with similar semantics but different 
wordings


• Summarization 


- “Sample” a sentence with similar semantics


• Grammatical error correction


- “Sample” a more likely sentence with the same semantics



Sampling Methods



Independent Sampling
• Sampling from CDF


- Probabilistic density function (PDF)


- Cumulative density function (CDF)


- Sampling procedure


• Problems


- CDF not analytic 


- Especially, the conditional CDF in multivariate cases

Pr[a ≤ x ≤ b] = ∫
b

a
f(x) dx

F(x) = ∫
x

−∞
f(u) du = Pr[u ≤ x]

u ∼ U[0,1]; x = CDF−1(u)



• Reject Sampling


- To sample from


- We instead sample


- Accept the sample �  with probability


 where �  is a constant s.t. 


- Reject  �  w.p. � 


• Many other sampling methods

x

k

x 1 −
p̃(x)

k ⋅ q(x)

Independent Sampling

p(x) =
1
Z

p̃(x)

x ∼ q(x)
p̃(x)

k ⋅ q(x)

kq(x) ≥ p̃(x), ∀x



• Problem: Sample from 


• MCMC sampling


- Start from an arbitrary initial sample


- Sample   �   


- Hope   �    as   �

x(1) ∼ p(x(1) |x(0)), x(2) ∼ p(x(2) |x(1)), ⋯

p(x(n)) → p(x) n → ∞

Dependent Sampling
p(x)

x(0)



• States:  � 


• Initial distribution  � 


• Transition probability:  � 


- �  is independent of � , given � 


- �  works for all time steps � 


• Thm: Starting from an arbitrary initial distribution, a Markov 
Chain converges to a unique stationary distribution (under 
mild assumptions).

S = {s1, s2, ⋯}

π(0)

𝒯i→j = p(x(t+1) = sj |x(t) = si)

x(t+1) x(t−1) x(t)

𝒯i→j t

Markov Chain



• Problem: Sample from 


• MCMC sampling


- Start from an arbitrary initial sample


- Sample   �   


- Hope   �    as   �

x(1) ∼ p(x(1) |x(0)), x(2) ∼ p(x(2) |x(1)), ⋯

p(x(n)) → p(x) n → ∞

Markov Chain Monte Carlo
p(x)

x(0)



• Problem: Sample from 


• MCMC sampling


- Start from an arbitrary initial sample


- Sample   �   


- Hope   �    as   �

x(1) ∼ p(x(1) |x(0)), x(2) ∼ p(x(2) |x(1)), ⋯

p(x(n)) → p(x) n → ∞

Markov Chain Monte Carlo
p(x)

x(0)

by following a carefully designed Markov chain

Guaranteed that



• Input

- An arbitrary desired distribution � 


• Output 
- An unbiased sample  � 


• Algorithm 

- Start from an arbitrary initial state � 


- For every step � 


 Propose a new state � 


 Accept �  w.p.  � , i.e., � 


 Reject �  otherwise, i.e., � 


- Return �  with a large �

p(x)

x ∼ p(x)

x(0)

t
x′� ∼ g(x′ �|x(t))

x′� A(x′�|x) = min {1,
p(x′�)g(x(t) |x′ �)
p(x)g(x′�|x(t)) } x(t) = x′ �

x′� x(t+1) = x(t)

x(t) t

Metropolis—Hastings Sampler

� : arbitrary proposal distributiong(x′�|x)



• Detailed balance property = > Stationary distribution


 If  

      � 


 Then 


 �  is a stationary distribution


 Because


 �  

∀x, y, π(x) ⋅ 𝒯x→y = π(y) ⋅ 𝒯y→x

π(x)

∀x, π(x) = ∑
y

π(y)𝒯y→x = ∑
y

π(x)𝒯x→y = π(x)

Proof Sketch



• MH Sampler satisfies detailed balance


- � ,


- W.L.O.G., we assume  �   


 � 


 �

∀x, y

p(x)g(y |x) ≥ p(y)g(x |y)

(1) = p(y) ⋅ g(x |y)

(2) = p(y) ⋅ g(x |y)

Proof Sketch (Cont.)

p(y) ⋅ 𝒯y→x = p(y) ⋅ g(x |y) ⋅ min {1,
p(x)g(y |x)
p(y)g(x |y) }

p(x) ⋅ 𝒯x→y = p(x) ⋅ g(y |x) ⋅ min {1,
p(y)g(x |y)
p(x)g(y |x) } (1)

(2)



• Suppose � 


• If the proposal distribution is  � 


• Then, the acceptance rate is  � 


- Notice that  � 


- Thus, � 


=> Gibbs step is a special case of an MH step, with AC rate = 1

x = (x1, x2, ⋯, xi−1, xi, xi+1, ⋯, xn)

x′�i ∼ p(xi |x−i)

A(x′�|x) = min {1,
p(x′�)g(x |x′�)
p(x)g(x′�|x) }

x′� = (x1, x2, ⋯, xi−1, x′ �i, xi+1, ⋯, xn)

p(x′�)g(x |x′�)
p(x)g(x′�|x)

=
p(x−i)p(x′�i |x−i) ⋅ p(xi |x−i)
p(x−i)p(xi |x−i) ⋅ p(x′�i |x−i)

= 1

Gibbs Sampler



Applying MH to  
Sentence Generation



• State: Every sentence 


• Target distribution: Depend on the task


• Proposal distribution


- Task agnostic, or task specific


• Compute acceptance rate


- We can’t do anything here

MH Components



• General formula

- � 


- � : scoring functions specific to the task
p(x) ∝ pLM(x) ⋅ s1(x)⋯sn(x)
si(x)

Target distribution



• General formula

- � 


- � : scoring functions specific to the task


• Keywords-to-sentence generation


 � 


• Paraphrase generation/Grammatical error correction

- �

p(x) ∝ pLM(x) ⋅ s1(x)⋯sn(x)
si(x)

s(x) = {1, if keywords in x
0, otherwise

s(x) = simsemantic(x, x0) + diffword(x, x0)

Target distribution



• Replace


 � 


• Delete


• Insert


- Also sample from posterior

Proposal Distribution



Examples: Keywords-to-Sentence



Examples: Paraphrase Generation



Examples: Paraphrase Generation



Analysis



Analysis (Cont.)



• MCMC: Dependent sampling with a Markov chain


- Gibbs sampler: posterior sampling


- MH sampler: propose-and-reject sampling


• MH sentence generation


- The framework is the same


- Need to design target and proposal distributions


- Various applications: paraphrase generation, grammatical 
error correction, keywords-to-sentence generation, etc.


 (A blueprint is needed for MH generation)

Summary (Take-Home Msg)



Thank you!
Q&A


