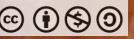
Search-Based Unsupervised Text Generation

Lili Mou

Dept. Computing Science, University of Alberta Alberta Machine Intelligence Institute (Amii)

doublepower.mou@gmail.com



Outline

- Introduction
- General framework
- Applications
 - Paraphrasing
 - Summarization
 - Text simplification
- Conclusion & Future Work

A fading memory ...

• Of how I learned natural language processing (NLP):

NLP = NLU + NLG Understanding Generation

- NLU was the main focus of NLP research.
- NLG was relatively easy, as we can generate sentences by rules, templates, etc.
- Why this may NOT be correct?
 - Rules and templates are not natural language.
 - How can we represent meaning? Almost the same question as NLU.

A fading memory ...

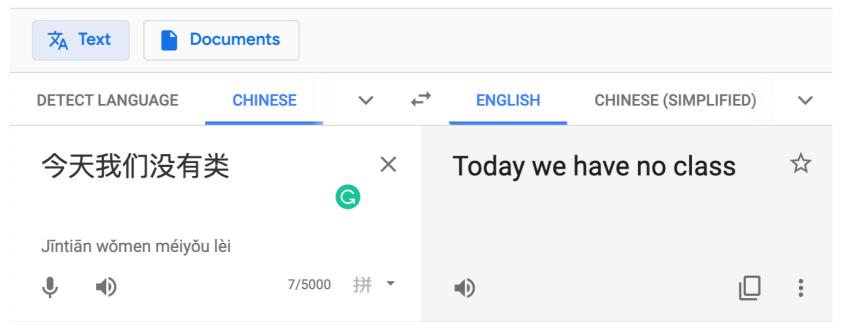
• Of how I learned natural language processing (NLP):

NLP = NLU + NLG Understanding Generation

- NLU was the main focus of NLP research.
- NLG was relatively easy, as we can generate sentences by rules, templates, etc.
- Why this may NOT be correct?
 - Rules and templates are not natural language.
 - How can we represent meaning? Almost the same question as NLU.

Why NLG is interesting?

- Industrial applications
 - Machine translation
 - Headline generation for news
 - Grammarly: grammatical error correction



https://translate.google.com/

Why NLG is interesting?

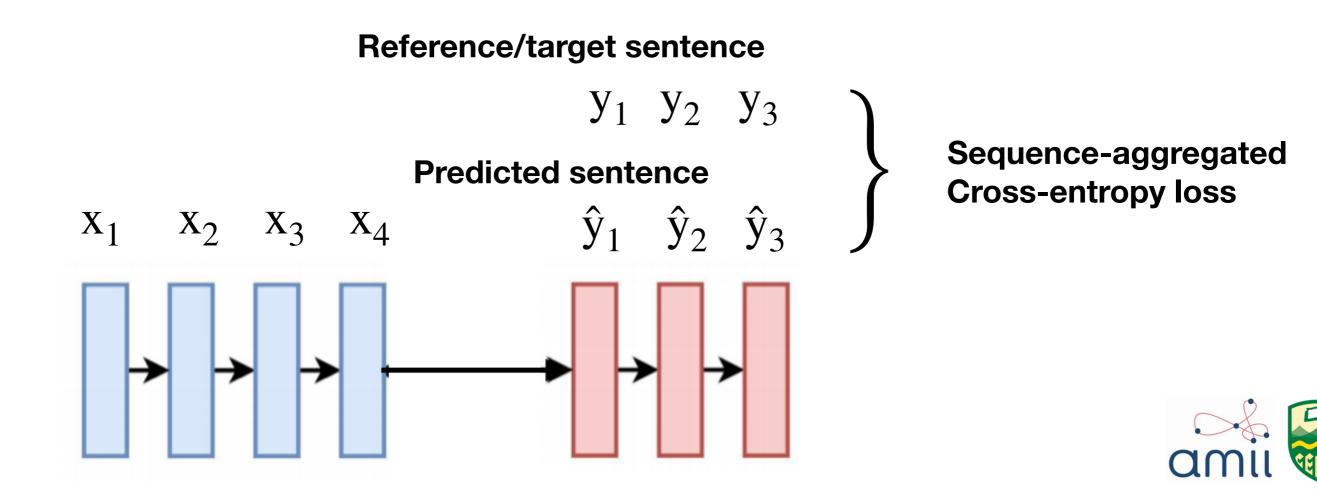
- Industrial applications
 - Machine translation
 - Headline generation for news
 - Grammarly: grammatical error correction
- Scientific questions
 - Non-linear dynamics for long-text generation
 - Discrete "multi-modal" distribution

Supervised Text Generation

Sequence-to-sequence training

Training data =
$$\{(\mathbf{x}^{(m)}, \mathbf{y}^{(m)})\}_{m=1}^{M}$$

known as a parallel corpus



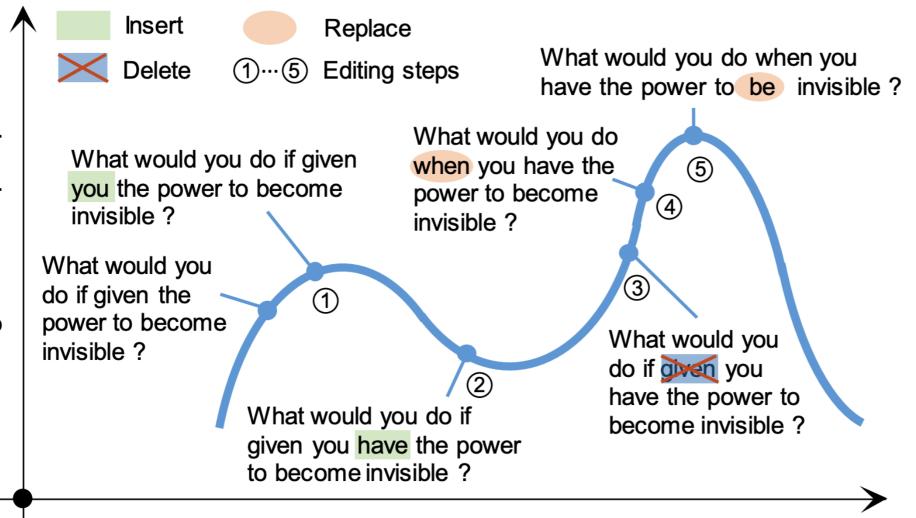
Unsupervised Text Generation

- Training data = $\{\mathbf{x}^{(m)}\}_{m=1}^{M}$
 - Not even training (we did it by searching)
- Important to industrial applications
 - Startup: No data
 - Minimum viable product
- Scientific interest
 - How can AI agents go beyond NLU to NLG?
 - Unique search problems

General Framework

General Framework

- Search objective
 - Scoring function measuring text quality
- Search algorithm
 - Currently we are using stochastic local search



- Search objective
 - Scoring function measuring text quality

$$s(\mathbf{y}) = s_{LM}(\mathbf{y}) \cdot s_{Semantic}(\mathbf{y})^{\alpha} \cdot s_{Task}(\mathbf{y})^{\beta}$$

- Language fluency
- Semantic coherence
- Task-specific constraints

- Search objective
 - Scoring function measuring text quality

$$s(\mathbf{y}) = s_{LM}(\mathbf{y}) \cdot s_{Semantic}(\mathbf{y})^{\alpha} \cdot s_{Task}(\mathbf{y})^{\beta}$$

- Language fluency
 - Language model estimates the "probability" of a sentence

$$\overrightarrow{\text{PPL}}(\mathbf{y}) = \sqrt[2|\mathbf{y}|]{\prod_{i}^{|\mathbf{y}|} \frac{1}{p_{\overrightarrow{\text{LM}}}(y_i|\mathbf{y}_{< i})} \prod_{i}^{|\mathbf{y}|} \frac{1}{p_{\overleftarrow{\text{LM}}}(y_i|\mathbf{y}_{> i})}}.$$

$$s_{LM}(\mathbf{y}) = PPL(\mathbf{y})^{-1}$$

- Semantic coherence
- Task-specific constraints

- Search objective
 - Scoring function measuring text quality

$$s(\mathbf{y}) = s_{LM}(\mathbf{y}) \cdot s_{Semantic}(\mathbf{y})^{\alpha} \cdot s_{Task}(\mathbf{y})^{\beta}$$

- Language fluency
- Semantic coherence

$$s_{semantic} = \cos(\boldsymbol{e}(\mathbf{y}), \boldsymbol{e}(\mathbf{y}))$$

Task-specific constraints

- Search objective
 - Scoring function measuring text quality

$$s(\mathbf{y}) = s_{LM}(\mathbf{y}) \cdot s_{Semantic}(\mathbf{y})^{\alpha} \cdot s_{Task}(\mathbf{y})^{\beta}$$

- Language fluency
- Semantic coherence
- Task-specific constraints
 - Paraphrasing: lexical dissimilarity with input
 - Summarization: length budget

- Observations:
 - The output closely resembles the input
 - Edits are mostly local
 - May have hard constraints

• Thus, we mainly used local stochastic search

(stochastic local search)

Start with y_0 # an initial candidate sentence

Loop within budget at step *t*:

 $\mathbf{y}' \sim \text{Neighbor}(\mathbf{y}_t)$ # a new candidate in the neighbor

Either reject or accept \mathbf{y}'

If accepted, $\mathbf{y}_t = \mathbf{y}'$, or otherwise $\mathbf{y}_t = \mathbf{y}_{t-1}$

Local edits for $\mathbf{y}' \sim \text{Neighbor}(\mathbf{y}_t)$

- General edits
 - Word deletion
 - Word insertion
 - Word replacement
- Task specific edits

$$p(w_*|\cdot) = \frac{f_{sim}(\mathbf{x}_*, \mathbf{x}_0) \cdot f_{exp}(\mathbf{x}_*, \mathbf{x}_0) \cdot f_{flu}(\mathbf{x}_*)}{Z},$$
$$Z = \sum_{w_* \in \mathcal{W}} f_{sim}(\mathbf{x}_*, \mathbf{x}_0) \cdot f_{exp}(\mathbf{x}_*, \mathbf{x}_0) \cdot f_{flu}(\mathbf{x}_*),$$
Gibbs in Metropolis

- Reordering, swap of word selection, etc.

Example: Metropolis—Hastings sampling

Start with y_0 # an initial candidate sentence

Loop within your budget at step *t*:

 $\mathbf{y}' \sim \text{Neighbor}(\mathbf{y}_t) \text{ # a new candidate in the neighbor}$ $\begin{array}{l} A(\mathbf{x}'|\mathbf{x}_{t-1}) = \min\{1, A^*(\mathbf{x}'|\mathbf{x}_{t-1})\} \\ A^*(\mathbf{x}'|\mathbf{x}_{t-1}) = \frac{\pi(\mathbf{x}')g(\mathbf{x}_{t-1}|\mathbf{x}')}{\pi(\mathbf{x}_{t-1})g(\mathbf{x}'|\mathbf{x}_{t-1})} \end{array}$

If accepted, $\mathbf{y}_t = \mathbf{y}'$, or otherwise $\mathbf{y}_t = \mathbf{y}_{t-1}$

Example: Simulated annealing

Start with y_0 # an initial candidate sentence

Loop within your budget at step *t*:

 $\mathbf{y}' \sim \text{Neighbor}(\mathbf{y}_t)$ # a new candidate in the neighbor

Either reject or accept \mathbf{y}'

$$p(\operatorname{accept}|\mathbf{x}_*, \mathbf{x}_t, T) = \min\left(1, e^{\frac{f(\mathbf{x}_*) - f(\mathbf{x}_t)}{T}}\right)$$

If accepted,
$$\mathbf{y}_t = \mathbf{y}'$$
, or otherwise $\mathbf{y}_t = \mathbf{y}_{t-1}$

Example: Hill climbing

Start with y_0 # an initial candidate sentence

Loop within your budget at step *t*:

 $\mathbf{y}' \sim \text{Neighbor}(\mathbf{y}_t)$ # a new candidate in the neighbor

Either reject or accept \mathbf{y}'

whenever \mathbf{y}' is better than \mathbf{y}_{t-1}

If accepted, $\mathbf{y}_t = \mathbf{y}'$, or otherwise $\mathbf{y}_t = \mathbf{y}_{t-1}$

Applications

Paraphrase Generation

Input	Reference				
Which is the best training institute in Pune for digital marketing ?	Which is the best digital marketing training institute in Pune ?				

Could be useful for various NLP applications

- E.g., query expansion, data augmentation

Paraphrase Generation

- Search objective
 - Fluency
 - Semantic preservation
 - Expression diversity
 - The paraphrase should be different from the input

$$s_{exp}(\mathbf{y}_*, \mathbf{y}_0) = 1 - \text{BLEU}(\mathbf{y}_*, \mathbf{y}_0)$$

BLEU here measures the *n*-gram overlapping

- Search algorithm
- Search space
- Search neighbors

Paraphrase Generation

- Search objective
 - Fluency
 - Semantic preservation
 - Expression diversity
 - The paraphrase should be different from the input

$$s_{exp}(\mathbf{y}_*, \mathbf{y}_0) = 1 - \text{BLEU}(\mathbf{y}_*, \mathbf{y}_0)$$

BLEU here measures the *n*-gram overlapping

- Search algorithm: Simulated annealing
- Search space: the entire sentence space with \mathbf{y}_0 = input
- Search neighbors
 - Generic word deletion, insertion, and replacement
 - Copying words in the input sentence



Text Simplification

Input

Reference

In 2016 alone, American developers had spent 12 billion dollars on **constructing** theme parks, <u>according to a Seattle based</u> <u>reporter.</u>

American developers had spent 12 billion dollars in 2016 alone on **building** theme parks.

Could be useful for

- education purposes (e.g., kids, foreigners)
- for those with dyslexia

Key observations

- Dropping phrases and clauses
- Phrase re-ordering
- Dictionary-guided lexicon substitution

Search objective

- Language model fluency (discounted by word frequency)
- Cosine similarity
- Entity matching
- Length penalty
- Flesh Reading Ease (FRE) score [Kincaid et al., 1975]

Search operations

Search objective

- Language model fluency (discounted by word frequency)
- Cosine similarity
- Entity matching
- Length penalty
- Flesh Reading Ease (FRE) score [Kincaid et al., 1975]

Search operations

- Dictionary-guided substitution (e.g., WordNet)
- Phrase removal
- Re-ordering

with parse trees

Input

Reference

The world's biggest miner **bhp billiton** announced tuesday it was **dropping** its controversial hostile **takeover bid** for rival **rio tinto** due to the state of the global economy

bhp billiton drops rio tinto takeover bid

Key observation

- Words in the summary mostly come from the input
- If we generate the summary by selecting words, we have

bhp billiton dropping hostile bid for rio tinto

- Search objective
 - Fluency
 - Semantic preservation
 - A hard length constraint

$$f_{\text{LEN}}(\mathbf{y};s) = \begin{cases} 1, & \text{if } |\mathbf{y}| = s, \\ -\infty, & \text{otherwise.} \end{cases}$$

(Explicitly controlling length is not feasible in previous work)

- Search space
- Search neighbor
- Search algorithm

- Search objective
 - Fluency
 - Semantic preservation
 - A hard length constraint

$$f_{\text{LEN}}(\mathbf{y};s) = \begin{cases} 1, & \text{if } |\mathbf{y}| = s, \\ -\infty, & \text{otherwise.} \end{cases}$$

(Explicitly controlling length is not feasible in previous work)

Search space with only feasible solutions

$$\mathscr{V}|^{|\mathbf{y}|} \Longrightarrow \left(\begin{array}{c} |\mathbf{x}| \\ s \end{array} \right)$$

- Search neighbor: swap only
- Search algorithm: hill-climbing

Experimental Results

Research Questions

- General performance
- Greediness vs. Stochasticity
- Search objective vs. Measure of success

General Performance

Paraphrase generation

		Quora				Wikianswers				
	Model	iBLEU	BLEU	Rouge1	Rouge2	iBLEU	BLEU	Rouge1	Rouge2	
	ResidualLSTM	12.67	17.57	59.22	32.40	22.94	27.36	48.52	18.71	
	VAE-SVG-eq	15.17	20.04	59.98	33.30	26.35	32.98	50.93	19.11	
Supervised	Pointer-generator	16.79	22.65	61.96	36.07	31.98	39.36	57.19	25.38	
Supervised	Transformer	16.25	21.73	60.25	33.45	27.70	33.01	51.85	20.70	
	Transformer+Copy	17.98	24.77	63.34	37.31	31.43	37.88	55.88	23.37	
	DNPG	<u>18.01</u>	<u>25.03</u>	<u>63.73</u>	<u>37.75</u>	<u>34.15</u>	<u>41.64</u>	<u>57.32</u>	25.88	
	Pointer-generator	5.04	6.96	41.89	12.77	21.87	27.94	53.99	20.85	
Supervised	Transformer+Copy	6.17	8.15	44.89	14.79	23.25	29.22	53.33	21.02	
Supervised	Shallow fusion	6.04	7.95	44.87	14.79	22.57	29.76	53.54	20.68	
+ Domain-adapted	MTL	4.90	6.37	37.64	11.83	18.34	23.65	48.19	17.53	
-	MTL+Copy	7.22	9.83	47.08	19.03	21.87	30.78	54.10	21.08	
	DNPG	10.39	16.98	56.01	28.61	25.60	35.12	56.17	23.65	
	VAE	8.16	13.96	44.55	22.64	17.92	24.13	31.87	12.08	
Unaunamicad	Lag VAE	8.73	15.52	49.20	26.07	18.38	25.08	35.65	13.21	
Unsupervised	CGMH	9.94	15.73	48.73	26.12	20.05	26.45	43.31	16.53	
	UPSA	12.03	18.21	<u>59.51</u>	32.63	24.84	32.39	54.12	21.45	

BLEU and ROUGE scores are automatic evaluation metrics based on references

General Performance

Text Summarization

Model		Data			Len D	Rouge F1			Len O
		article	title	external		R-1	R-2	R-L	
A	Lead-N-8	\checkmark			8	21.39	7.42	20.03	7.9
	HC_article_8	\checkmark			8	<u>23.09</u>	<u>7.50</u>	<u>21.29</u>	7.9
	HC_title_8		\checkmark		8	26.32	9.63	24.19	7.9
	Lead-N-10	\checkmark			10	23.03	7.95	21.29	9.8
	Wang and Lee (2018)	\checkmark	\checkmark		-	27.29	10.01	24.59	10.8
	Zhou and Rush (2019)		\checkmark	billion	-	26.48	10.05	24.41	9.3
В	HC_article_10	\checkmark			10	24.44	8.01	22.21	9.8
	HC_title_10		\checkmark		10	27.52	10.27	24.91	9.8
	<i>HC_title+twitter_10</i>		\checkmark	twitter	10	<u>28.26</u>	10.42	25.43	9.8
	HC_title+billion_10		\checkmark	billion	10	28.80	10.66	25.82	9.8
	Lead-P-50	\checkmark			50%	24.97	8.65	22.43	14.6
	Fevry and Phang (2018)	\checkmark		SNLI	50%	23.16	5.93	20.11	14.8
С	Baziotis et al. (2019)	\checkmark			50%	24.70	7.97	22.14	15.1
	HC_article_50p	\checkmark			50%	<u>25.58</u>	8.44	22.66	14.9
	HC_title_50p		\checkmark		50%	27.05	9.75	23.89	14.9

General Performance

Text Simplification

Method	BLEU	SARI	Add	Delete	Keep	GM	FKGL	Len			
Reference	100	70.13	-	-	-	83.74	3.20	12.75			
Baselines											
Complex	21.30	2.82	-	-	-	7.75	8.62	23.06			
Reduced-250	11.79	28.39	-	-	-	18.29	-0.23	14.48			
Supervised Methods											
PBMT-R	18.1	15.77	3.07	38.34	5.90	16.89	7.59	23.06			
Hybrid	14.46	28.61*	0.95*	78.86*	6.01*	20.34	4.03	12.41			
EncDecA	21.68	24.12	2.73	62.66	6.98	22.87	5.11	16.96			
Dress	23.2	27.37	3.08	71.61	7.43	25.2	4.11	14.2			
Dress-Ls	24.25	26.63	3.21	69.28	7.4	25.41	4.21	14.37			
DMass	11.92	31.06	1.25	84.12	7.82	19.24	3.60	15.07			
S2S-All-FA	19.55	30.73	2.64	81.6	7.97	24.51	2.60	10.81			
Edit-NTS	19.85	30.27*	2.71*	80.34*	7.76*	24.51	3.41	10.92			
EncDecP	23.72	28.31	-	-	-	25.91	-	-			
EntPar	11.14	33.22	2.42	89.32	7.92	19.24	1.34	7.88			
Unsupervised Methods (Ours)											
Base	27.22	26.07	2.35	68.35	7.5	26.64	2.95	12.9			
Base+LS	27.17	26.26	2.28	68.94	7.57	26.71	2.93	12.88			
Base+RO	26.31	26.99	2.47	70.88	7.63	26.64	3.14	12.81			
Base+LS+RO	26.21	27.11	2.40	71.26	7.67	26.66	3.12	12.81			

General Performance

Human evaluation on paraphrase generation

Model	Relevance		Fluency	
	Mean Score	Agreement	Mean Score	Agreement
VAE	2.65	0.41	3.23	0.51
Lag VAE	2.81	0.45	3.25	0.48
CGMH	3.08	0.36	3.51	0.49
UPSA	3.78	0.55	3.66	0.53

General Performance

Examples

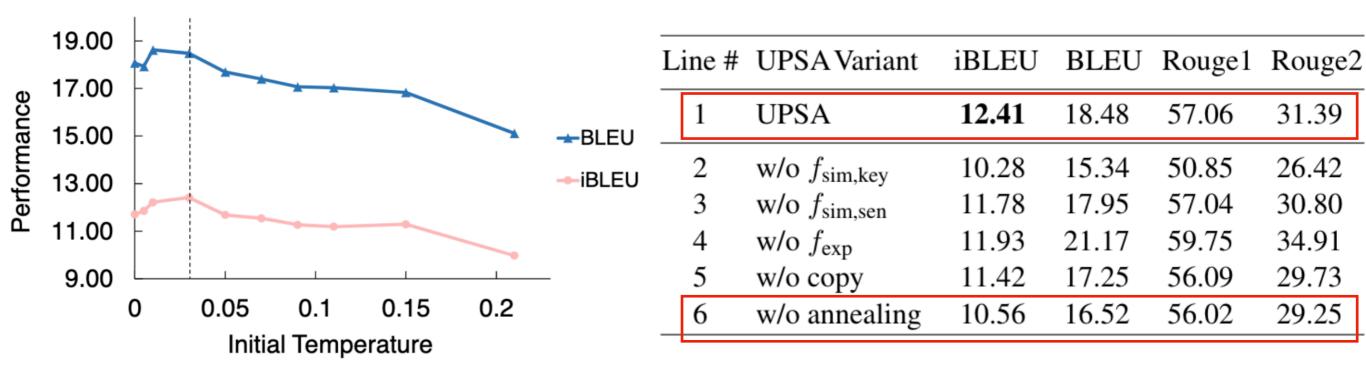
Input	VAE	Lag VAE	CGMH	UPSA
where are best places	where are best places for	where are best places for	Where is best store for the	Where can I find the best
for spring snowboard-	running in the world? (3.33)	honeymoon year near the	snowboarding in the US?	places in the US for snow-
ing in the us?		us? (2.33)	(3.67)	boarding? (4.67)
how can i become good	how can i have a good an-	how can i become good	how can i become very rich	how should i do to get better
in studies?	droid phone? (2.33)	students? (4.33)	in studies? (4.00)	grades in my studies? (4.33)
what are the pluses and	what are the UNK and most	what are the UNK and in-	what are the misconception	what are the mistakes and
minuses about life as a	interesting life as a foreigner	teresting things about life	about UNK with life as a	pluses life as a foreigner in
foreigner in singapore?	in medieval greece? (2.33)	as a foreigner? (2.33)	foreigner in western? (2.33)	singapore? (2.67)

Main conclusion

- Search-based unsupervised text generation works in a variety of applications
- Surprisingly, it does yield fluent sentences.

Greediness vs Stochasticity

Paraphrase generation

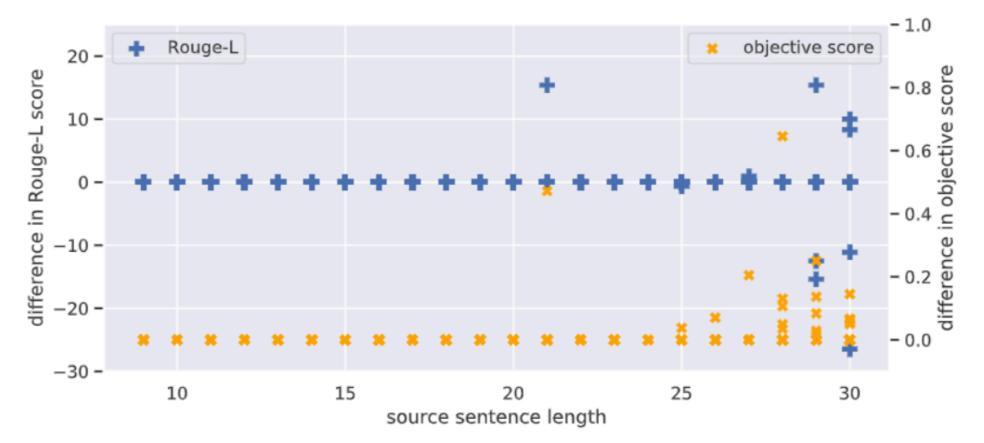


Findings:

- Greedy search < Simulated annealing
- Sampling < stochastic search

Search Objective vs. Measure of Success

Experiment: summarization by word selection



Comparing hill-climbing (w/ restart) and exhaustive search

- Exhaustive search does yield higher scores $s(\mathbf{y})$
- Exhaustive search does NOT yield higher measure of success (ROUGE)

Conclusion & Future Work

Search-based unsupervised text generation

General framework

- Search objective
 - fluency, semantic coherence, etc.
- Search space
 - word generation from the vocabulary, word selection
- Search algorithm
 - Local search with word-based edit
 - MH, SA, and hill climbing

Applications

- Paraphrasing, summarization, simplification

Future Work

Defining the search neighborhood

Input: What would you do if given the power to become invisible?

Output: What would you do when you have the power to be invisible?

Current progress

- Large edits are possibly due to the less greedy SA but are rare

Future work

- Phrase-based edit (combining discrete sampling with VAE)
- Syntax-based edit (making use of probabilistic CFG)

Future Work

Initial state of the local search

Current applications

- Paraphrasing, summarization, text simplification, grammatical error correction
- Input and desired output closely resemble each other

Future work

- Dialogue systems, machine translation, etc.
- Designing initial search state for general-purpose TextGen
- Combining retrieval-based methods

Future Work

Combining search and learning

Disadvantage of search-only approaches

- Efficiency: 1-2 seconds per sample
- Heuristically defined objective may be deterministically wrong

Future work

- MCTS (currently exploring)
- Difficulties: large branching factor, noisy reward

References

Ning Miao, Hao Zhou, Lili Mou, Rui Yan, Lei Li. CGMH: Constrained sentence generation by Metropolis-Hastings sampling. In AAAI, 2019.

Xianggen Liu, Lili Mou, Fandong Meng, Hao Zhou, Jie Zhou and Sen Song. Unsupervised paraphrasing by simulated annealing. In *ACL*, 2020.

Raphael Schumann, Lili Mou, Yao Lu, Olga Vechtomova and Katja Markert. Discrete optimization for unsupervised sentence summarization with word level extraction. In ACL, 2020.

Dhruv Kumar, Lili Mou, Lukasz Golab and Olga Vechtomova. Iterative edit-based unsupervised sentence simplification. In *ACL*, 2020.

Acknowledgments

Lili Mou is supported by AltaML, Amii Fellow Program, and Canadian CIFAR AI Chair Program.

Q&A

Thanks for listening!

