Word Embeddings & Language Modeling

Lili Mou
lmou@ualberta.ca
lili-mou.github.io
Last Lecture

- Logistic regression/Softmax: Linear classification

- Non-linear classification
 - Non-linear feature engineering
 - Non-linear kernel
 - Non-linear function composition

- Neural networks
 - Forward propagation: Compute activation
 - Backward propagation: Compute derivative
 (greedy dynamic programming)
Advantages of DL

- Work with raw data
 - Images processing: pixels
 - Speech processing: frequency

[Graves+, ICASSP'13]
How about Language?

- The raw input of language

\[I \ like \ the \ course \]

- Problem: *Words are discrete tokens!*
Representing Words

• **Attempt#1:**
 - By index in the vocabulary

• **Problem**
 - Introducing artefacts
 • Order, metric, inner-product
 • Extreme non-linearity

\[
\mathcal{V} = \{0, 1, 2, 3\}
\]
Representing Words

- **Attempt#2**: One-hot representation

 - Separability doesn't generalize
 - Metric is trivial

\[V = \begin{cases} 0 & \star \\ 1 & \bigstar \\ 2 & \square \\ 3 & \bigcirc \end{cases} \]

\[
\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \end{pmatrix}
\]
Design a **metric** $d(\cdot, \cdot)$ to evaluate the “distance” of two words in terms of some aspect

- E.g., semantic similarity

I’d like to have some pop/soda/water/fruit/rest

- Traditional method: WordNet distance (if it’s a metric).

If not, doesn’t matter.
Metric in the Word Space

- Design a metric $d(\cdot, \cdot)$ to evaluate the “distance” of two words in terms of some aspect
 - E.g., semantic similarity

 I’d like to have some pop/soda/water/fruit/rest

- A straightforward metric on one-hot vector:
 - Discrete metric

 $d(x_i, x_j) = 1$ if $x_i = x_j$, 0 otherwise
ID and One-Hot

<table>
<thead>
<tr>
<th>ID representation</th>
<th>One-hot representation</th>
</tr>
</thead>
</table>
| 1 3 2 0 | \[
| | \begin{bmatrix}
| | 0 \\
| | 1 \\
| | 0 \\
| | 0 \\
| | 0 \\
| | \end{bmatrix} |

<table>
<thead>
<tr>
<th>Dimension</th>
<th>One-dimensional</th>
<th>-dimensional</th>
</tr>
</thead>
<tbody>
<tr>
<td>Euclidean</td>
<td>Artefact</td>
<td>Non-informative</td>
</tr>
<tr>
<td>Discrete</td>
<td>Non-informative</td>
<td>Non-informative</td>
</tr>
<tr>
<td>Learnable</td>
<td>Difficult</td>
<td>Possible but may not generalize Need to explore more</td>
</tr>
</tbody>
</table>

- Need to explore more
Something in Between

- Map a word to a low-dimensional space
 - Not as low as one-dimensional ID representation
 - Not as high as $|\mathcal{V}|$-dimensional one-hot representation

Attempt#3: Word vector representation (a.k.a., word embeddings)

- Mapping a word to a vector
- Equivalent to linear transformation of one-hot vector

\[\begin{pmatrix} 0 \\ 1 \\ \cdot \\ \cdot \\ 0 \end{pmatrix} \text{ embedding of word } i \]

\[\cdot \begin{pmatrix} 0 \\ 1 \\ \cdot \\ \cdot \\ 0 \end{pmatrix} \text{ one-hot representation of word } i \text{ (sparse)} \]
Obtaining the Embedding Matrix

- **Attempt#1**: Treat as neural weights as usual
 - Random initialization & gradient descent
- Properties of the embedding matrix
 - Huge, \(|V| \times d_{NN}\) parameters (cf. weight for layerwise MLP)
 - Sparsely updated
- Nature of language
 - Power law distribution
- Good if corpus is large
Embedding Learning

- **Attempt #2:**
 - Manually specifying the distance metric/inner-product, etc.
 - Humans are not rational

- **Attempt #3:**
 - Pre-training on a massive corpus with a different (pre-training) objective
 - Then, we can fine-tune those pre-trained embeddings in almost any specific task.
Pretraining Criterion

• Language Modeling
 - Given a corpus $\mathbf{x} = x_1x_2\cdots x_t$
 - Goal: Maximize $p(\mathbf{x})$

• Is it meaningful to view language sentences as a random variable?
 - Frequentist: Sentences are repetitions of i.i.d. experiments
 - Bayesian: Everything unknown is a random variable
Factorization

- \(p(\mathbf{x}) = p(x_1, \ldots, x_t) \) cannot be parametrized

- Factorizing a giant probability

\[
p(\mathbf{x}) = p(x_1, \ldots, x_t) = p(x_1)p(x_2 | x_1) \cdots p(x_t | x_1, \ldots, x_{t-1})
\]

- Still unable to parametrize, especially \(p(x_n | x_1, \ldots, x_{n-1}) \)

- **Questions:**
 - Can we decompose any probabilistic distribution defined on \(\mathbf{x} \) into this form? Yes.
 - Is it necessary to decompose the distribution a probabilistic distribution in this form? No.
Markov Assumptions

$$p(x) = p(x_1, \ldots, x_t)$$

$$= p(x_1)p(x_2 | x_1)\cdots p(x_t | x_1, \ldots, x_{t-1})$$

- Independency
 - Given the current “state,” independent with previous ones
 - State at step t: $(x_{t-n+1}, x_{t-n+2}, \ldots, x_{t-1})$
 - $x_t \perp x_{\leq t-n} | x_{t-n+1}, x_{t-n+2}, \ldots, x_{t-1}$

- Stationary property
 - $p(x_t | x_{t-1}, \ldots, x_{t-n+1}) = p(x_s | x_{s-n+1}, \ldots, x_{s-1})$ for all t, s
Parametrizing $p(w)$

$p(x) = p(x_1, \ldots, x_t)\\ = p(x_1)p(x_2 \mid x_1)\cdots p(x_t \mid x_1, \ldots, x_{n-1})\\ \approx p(x_1)p(x_2 \mid x_1)\cdots p(x_n \mid x_1, \ldots, x_{t-n+1})$

Direct parametrization:

Each multinomial distribution is directly parametrized

$p(w_n \mid w_1, \ldots, w_{n-1})$ (notation abuse)
N-gram Model

\[p(x) = p(x_1, \ldots, x_n) \]
\[= p(x_1)p(x_2 | x_1)\cdots p(x_n | x_1, \ldots, x_{n-1}) \]
\[\approx p(x_1)p(x_2 | x_1)\cdots p(x_n | x_1, \ldots, x_{t-n+1}) \]

\[\hat{p}(w_n | w_1, \ldots, w_{n-1}) = \frac{\#w_1\cdots w_n}{\#w_1\cdots w_{n-1}} \]

Questions:

• How many multinomial distributions?

• How many parameters in total?
Problems of n-gram models

- #para $\propto \exp(n)$
- Power-law distribution
 - Severe data sparsity even if n is small

- Normal distribution
 \[p(x) \propto \exp(-\tau x^2) \]
- Power-law distribution
 \[p(x) \propto x^{-k} \]
Smoothing Techniques

- Add-one smoothing
- Interpolation smoothing
- Backoff smoothing

Useful link: https://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf
Is it possible to parametrize LM by NN?

Yes

- \(p(w_n | w_1, \ldots, w_{n-1}) \) is a classification problem
- NNs are good at (esp. non-linear) classification
Feed-Forward Language Model

\[i\text{-th output} = P(w_t = i \mid \text{context}) \]

N.B. The Markov assumption also holds.

By product: Embeddings are pre-trained in a meaningful way
Recurrent Neural Language Model

- RNN keeps one or a few hidden states
- The hidden states change at each time step according to the input

\[h_t = \text{RNN}(x_t, h_{t-1}) = f(W_{\text{in}} x_t + W_{\text{hid}} h_{t-1}) \]

\[p(w_t | w_{0}^{t-1}) \approx \text{softmax} (W_{\text{out}} h_t) \]

- RNN directly parametrizes rather than \(p(w) \approx \prod_{t=1}^{m} p(w_t | w_{1}^{t-1}) \)

How can we use word embeddings?

- Embeddings demonstrate the internal structures of words
 - Relation represented by vector offset
 - “man” – “woman” = “king” – “queen” [Mikolov+NAACL13]
 - Word similarity

- Embeddings can serve as the initialization of almost every supervised task
 - A way of pretraining
 - **N.B.**: may not be useful when the training set is large enough
Word Embeddings in our Brain

“Somatotopic Embeddings” in our Brain

Complexity Concerns

● Time complexity
 - Hierarchical softmax [1]
 - Negative sampling: Hinge loss [2], Noisy contrastive estimation [3]

● Memory complexity
 - Compressing LM [4]

● Model complexity
 - Shallow neural networks are still too “deep.”
 - CBOW, SkipGram [3]

Deep neural networks:
To be, or not to be? That is the question.
CBOW, SkipGram (word2vec)

Hierarchical Softmax and Negative Contrastive Estimation

- HS

\[p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma \left([n(w, j+1) = \text{ch}(n(w, j))] \cdot v'_{n(w, j)}^T v_{w_I} \right) \]

- NCE

\[\log \sigma(v'_{w_O}^T v_{w_I}) + \sum_{i=1}^{k} \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v'_{w_i}^T v_{w_I}) \right] \]

Tricks in Training Word Embeddings

- The # of negative samples?
 - The more, the better.

- The distribution from which negative samples are generated? Should negative samples be close to positive samples?
 - The closer, the better.

- Full softmax vs. NCE vs. HS vs. hinge loss?
Recent Advances in Pretraining

• Pretraining the embedding mapping for words is not enough
 - E: Vocabulary $\rightarrow \mathbb{R}^n$

• Context info?
 - Why not pre-train follow-up layers as well?
 - E.g., ELMo, BERT

 - Represent a word in a context, with LM-like pretraining

 - Factorization of $p(w) = p(w_1)p(w_2 | w_1)\cdots p(w_n | w_1\cdots w_{n-1})$ is unnecessary
Learning Embeddings of Other Stuff

• Node embeddings of a network

• General criteria of embedding learning
 - Atomic token represented by an embedding
 - Training embeddings by predicting “context”
Representing Words

One-hot

Real-valued embedding

Index

One pretraining method

Language modeling
 - Max Pr(corpus)

N-gram
 - Markov assumption
 - MLE = counting %
 - Sparsity
 - Para $\propto \exp(n)$
 - Power law dist.

Embeddings in general
 - Discrete token -> vector
 - Learned by predicting context

[E] *

NN-LM
 - Predict the next word
 - Embeddings pretrained
 - Recent advance: Pretrain LM
Suggested Reading

More References