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• Logistic regression/Softmax: Linear classification


• Non-linear classification

- Non-linear feature engineering

- Non-linear kernel

- Non-linear function composition


• Neural networks

- Forward propagation: Compute activation

- Backward propagation: Compute derivative 


 (greedy dynamic programming)


Last Lecture



• Work with raw data


- Images processing: pixels


- Speech processing: frequency
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Advantages of DL

[Graves+, ICASSP'13]

ImageNet



• The raw input of language 


• Problem: Words are discrete tokens! 
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How about Language?

I like the course



{ }
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Representing Words
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• Attempt#1: 

- By index in the vocabulary 


• Problem


-  Introducing artefacts


• Order, metric, inner-product


• Extreme non-linearity



• Attempt#2: One-hot representation


X Separability doesn’t generalize


X Metric is trivial
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Representing Words
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• Design a metric �  to evaluate the “distance” of two 

words in terms of some aspect


- E.g., semantic similarity


I’d like to have some pop/soda/water/fruit/rest 

• Traditional method: WordNet distance (if it’s a metric).

d( ⋅ , ⋅ )
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Metric in the Word Space
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If not, doesn’t matter.



• Design a metric �  to evaluate the “distance” of two 

words in terms of some aspect


- E.g., semantic similarity


I’d like to have some pop/soda/water/fruit/rest 

• A straightforward metric on one-hot vector:


- Discrete metric


�  if � , �  otherwise


Non-informative

d( ⋅ , ⋅ )

d(xi, xj) = 1 xi = xj 0
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ID and One-Hot

1     3      2       0

ID representation One-hot representation

Dimension One-dimensional � -dimensional|𝒱 |
Euclidean Artefact Non-informative

M
et

ric

Discrete Non-informative Non-informative
Learnable Difficult Possible but may not generalize


Need to explore more
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Something in Between
• Map a word to a low-dimensional space


- Not as low as one-dimensional ID representation


- Not as high as � -dimensional one-hot representation


• Attempt#3: Word vector representation (a.k.a., word embeddings)


- Mapping a word to a vector


- Equivalent to linear tranformation

  of one-hot vector

|𝒱 |
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Obtaining the Embedding Matrix
• Attemp#1: Treat as neural weights as usual 


- Random initialization & gradient descent


• Properties of the embedding matrix


- Huge, �  parameters (cf. weight for layerwise MLP)


- Sparsely updated


• Nature of language 


- Power law distribution


• Good if corpus is large

|𝒱 | × dNN



• Attempt #2: 

- Manually specifying the distance metric/inner-product, etc.


- Humans are not rational 
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Embedding Learning

• Attempt #3: 

- Pre-training on a massive corpus with a different (pre-
training) objective


- Then, we can fine-tune those pre-trained embeddings in 
almost any specific task. 



• Language Modeling


- Given a corpus � 


- Goal: Maximize � 


• Is it meaningful to view language sentences as a random 
variable? 


- Frequentist: Sentences are repetitions of i.i.d. experiments


- Bayesian: Everything unknown is a random variable

x = x1x2⋯xt

p(x)
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Pretraining Criterion



•  �  cannot be parametrized


• Factorizing a giant probability


• Still unable to parametrize, especially


p(x) = p(x1, ⋯, xt)
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Factorization

p(xn |x1, ⋯, xn−1)

p(x) = p(x1, ⋯, xt)
= p(x1)p(x2 |x1)⋯p(xt |x1, ⋯, xt−1)

• Questions: 

- Can we decompose any probabilistic distribution defined on �  
into this form? Yes.


- Is it necessary to decompose the distribution a probabilistic 
distribution in this form? No.

x



� 


• Independency


- Given the current “state,” independent with previous ones


- State at step � :  � 


- � 


• Stationary property


- �   for all �

p(x) = p(x1, ⋯, xt)
= p(x1)p(x2 |x1)⋯p(xt |x1, ⋯, xt−1)

t (xt−n+1, xt−n+2, ⋯, xt−1)

xt ⊥ x≤t−n |xt−n+1, xt−n+2, ⋯, xt−1

p(xt |xt−1, ⋯, xt−n+1) = p(xs |xs−n+1, ⋯, xs−1) t, s
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Markov Assumptions



� 


Direct parametrization:


Each multinomial distribution is directly parametrized


�         (notation abuse)


p(x) = p(x1, ⋯, xt)
= p(x1)p(x2 |x1)⋯p(xt |x1, ⋯, xn−1)
≈ p(x1)p(x2 |x1)⋯p(xn |x1, ⋯, xt−n+1)

p(wn |w1, ⋯, wn−1)
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Parametrizing !p(w)



� 


� 


Questions: 

• How many multinomial distributions?


• How many parameters in total?

p(x) = p(x1, ⋯, xn)
= p(x1)p(x2 |x1)⋯p(xn |x1, ⋯, xn−1)
≈ p(x1)p(x2 |x1)⋯p(xn |x1, ⋯, xt−n+1)

̂p(wn |w1, ⋯, wn−1) =
#w1⋯wn

#w1⋯wn−1
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N-gram Model



• #para �  exp(� )


• Power-law distribution


- Severe data sparsity even if �  is small

∝ n

n
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Problems of n-gram models

• Normal distribution


• Power-law distribution


p(x) ∝ exp(−τx2)

p(x) ∝ x−k



• Add-one smoothing


• Interpolation smoothing


• Backoff smoothing


Useful link: https://nlp.stanford.edu/~wcmac/papers/20050421-
smoothing-tutorial.pdf
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Smoothing Techniques

https://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf
https://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf
https://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf


• Is it possible to parametrize LM by NN?


• Yes


-  �  is a classification problem


- NNs are good at (esp. non-linear) classification


p(wn |w1, ⋯, wn−1)
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Parametrizing LM by NN



Feed-Forward Language Model

N.B. The Markov 
assumption also holds.

Bengio, Yoshua, et al. "A 
Neural Probabilistic Language 
Model." JMLR. 2003.
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By product: Embeddings are pre-trained in a meaningful way



Recurrent Neural Language Model

● RNN keeps one or a few hidden states
● The hidden states change at each time step according to 

the input

● RNN directly parametrizes

rather than  

Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. In 
INTERSPEECH, 2010.
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How can we use word embeddings?

● Embeddings demonstrate the internal structures of words 
– Relation represented by vector offset

“man” – “woman” = “king” – “queen”
– Word similarity 

● Embeddings can serve as the initialization of almost every 
supervised task
– A way of pretraining
– N.B.: may not be useful when the training set is large enough
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[Mikolov+NAACL13]



Word Embeddings in our Brain

Huth, Alexander G., et al. "Natural speech reveals the semantic 
maps that tile human cerebral cortex." Nature 532.7600 (2016): 
453-458.
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“Somatotopic Embeddings” in our Brain

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007
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[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007
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Complexity Concerns
● Time complexity

– Hierarchical softmax [1]
– Negative sampling: Hinge loss [2], Noisy contrastive estimation [3]

● Memory complexity
– Compressing LM [4]

● Model complexity
– Shallow neural networks are still too “deep.”
– CBOW, SkipGram [3]

[1] Mnih A, Hinton GE. A scalable hierarchical distributed language model. NIPS, 2009.

[2] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language 
processing (almost) from scratch. JMLR, 2011.

[3] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in 
vector space. arXiv preprint arXiv:1301.3781. 2013

[4] Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, Zhi Jin. "Compressing neural language models by 
sparse word representations." In ACL, 2016.
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Deep neural networks: 
To be, or not to be? That is the question.



  

CBOW, SkipGram (word2vec)

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word 
representations in vector space. arXiv preprint arXiv:1301.3781. 2013
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Hierarchical Softmax and Negative 
Contrastive Estimation 

● HS

● NCE

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word 
representations in vector space. arXiv preprint arXiv:1301.3781. 2013
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Tricks in Training Word Embeddings

● The # of negative samples?
– The more, the better.

● The distribution from which negative samples are 
generated? Should negative samples be close to positive 
samples?
– The closer, the better.

● Full softmax vs. NCE vs. HS vs. hinge loss?
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• Pretraining the embedding mapping for words is not enough


- E: Vocabulary �  � 


• Context info?


- Why not pre-train follow-up layers as well?


- E.g., ELMo, BERT


- Represent a word in a context, with LM-like pretraining


- Factorization of �  is unnecessary

→ ℝn

p(w) = p(w1)p(w2 |w1)⋯p(wn |w1⋯wn−1)

CMPUT 651 (Fall 2019)

Recent Advances in Pretraining



• Node embeddings of a network
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Learning Embeddings of Other Stuff

[DeepWalk, KDD 2014]

• General criteria of embedding learning

- Atomic token represented by an embedding

- Training embeddings by predicting “context”
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• Neural LM: Bengio, Yoshua, et al. "A Neural Probabilistic 
Language Model." JMLR. 2003. 


• word2vec: Mikolov T, Chen K, Corrado G, Dean J. Efficient 
estimation of word representations in vector space. arXiv 
preprint arXiv:1301.3781. 2013 


• ELMo: Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., 
Clark, C., Lee, K. and Zettlemoyer, L., 2018. Deep 
contextualized word representations. In NAACL, 2018. 

• BERT: Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 
2018. Bert: Pre-training of deep bidirectional transformers for 
language understanding. In NAACL, 2019.


• DeepWalk: Perozzi, B., Al-Rfou, R. and Skiena, S. DeepWalk: 
Online learning of social representations. In KDD, 2014.
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Suggested Reading
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