
Word Embeddings
&

Language Modeling

Lili Mou

lmou@ualberta.ca

lili-mou.github.io

CMPUT 651 (Fall 2019)

mailto:lmou@ualberta.ca
http://lili-mou.github.io

CMPUT 651 (Fall 2019)

• Logistic regression/Softmax: Linear classification

• Non-linear classification

- Non-linear feature engineering

- Non-linear kernel

- Non-linear function composition

• Neural networks

- Forward propagation: Compute activation

- Backward propagation: Compute derivative

 (greedy dynamic programming)

Last Lecture

• Work with raw data

- Images processing: pixels

- Speech processing: frequency

CMPUT 651 (Fall 2019)

Advantages of DL

[Graves+, ICASSP'13]

ImageNet

• The raw input of language

• Problem: Words are discrete tokens!

CMPUT 651 (Fall 2019)

How about Language?

I like the course

{ }

CMPUT 651 (Fall 2019)

Representing Words

𝒱 =

0

1

2

3

1 3 2 0

• Attempt#1:

- By index in the vocabulary

• Problem

- Introducing artefacts

• Order, metric, inner-product

• Extreme non-linearity

• Attempt#2: One-hot representation

X Separability doesn’t generalize

X Metric is trivial

CMPUT 651 (Fall 2019)

Representing Words

{ }𝒱 =

0

1

2

3

0
1
0
0

0
0
0
1

0
0
1
0

1
0
0
0

• Design a metric � to evaluate the “distance” of two

words in terms of some aspect

- E.g., semantic similarity

I’d like to have some pop/soda/water/fruit/rest

• Traditional method: WordNet distance (if it’s a metric).

d(⋅ , ⋅)

CMPUT 651 (Fall 2019)

Metric in the Word Space

0
1
0
0

0
0
0
1

0
0
1
0

1
0
0
0

pop water fruit rest sleep
soda

drinks
food

leisure

things

… …

If not, doesn’t matter.

• Design a metric � to evaluate the “distance” of two

words in terms of some aspect

- E.g., semantic similarity

I’d like to have some pop/soda/water/fruit/rest

• A straightforward metric on one-hot vector:

- Discrete metric

� if � , � otherwise

Non-informative

d(⋅ , ⋅)

d(xi, xj) = 1 xi = xj 0

CMPUT 651 (Fall 2019)

0
1
0
0

0
0
0
1

0
0
1
0

1
0
0
0

Metric in the Word Space

CMPUT 651 (Fall 2019)

0
1
0
0

0
0
0
1

0
0
1
0

1
0
0
0

ID and One-Hot

1 3 2 0

ID representation One-hot representation

Dimension One-dimensional � -dimensional|𝒱 |
Euclidean Artefact Non-informative

M
et

ric

Discrete Non-informative Non-informative
Learnable Difficult Possible but may not generalize

Need to explore more

CMPUT 651 (Fall 2019)

Something in Between
• Map a word to a low-dimensional space

- Not as low as one-dimensional ID representation

- Not as high as � -dimensional one-hot representation

• Attempt#3: Word vector representation (a.k.a., word embeddings)

- Mapping a word to a vector

- Equivalent to linear tranformation

 of one-hot vector

|𝒱 |

CMPUT 651 (Fall 2019)

Obtaining the Embedding Matrix
• Attemp#1: Treat as neural weights as usual

- Random initialization & gradient descent

• Properties of the embedding matrix

- Huge, � parameters (cf. weight for layerwise MLP)

- Sparsely updated

• Nature of language

- Power law distribution

• Good if corpus is large

|𝒱 | × dNN

• Attempt #2:

- Manually specifying the distance metric/inner-product, etc.

- Humans are not rational

CMPUT 651 (Fall 2019)

Embedding Learning

• Attempt #3:

- Pre-training on a massive corpus with a different (pre-
training) objective

- Then, we can fine-tune those pre-trained embeddings in
almost any specific task.

• Language Modeling

- Given a corpus �

- Goal: Maximize �

• Is it meaningful to view language sentences as a random
variable?

- Frequentist: Sentences are repetitions of i.i.d. experiments

- Bayesian: Everything unknown is a random variable

x = x1x2⋯xt

p(x)

CMPUT 651 (Fall 2019)

Pretraining Criterion

• � cannot be parametrized

• Factorizing a giant probability

• Still unable to parametrize, especially

p(x) = p(x1, ⋯, xt)

CMPUT 651 (Fall 2019)

Factorization

p(xn |x1, ⋯, xn−1)

p(x) = p(x1, ⋯, xt)
= p(x1)p(x2 |x1)⋯p(xt |x1, ⋯, xt−1)

• Questions:

- Can we decompose any probabilistic distribution defined on �
into this form? Yes.

- Is it necessary to decompose the distribution a probabilistic
distribution in this form? No.

x

�

• Independency

- Given the current “state,” independent with previous ones

- State at step � : �

- �

• Stationary property

- � for all �

p(x) = p(x1, ⋯, xt)
= p(x1)p(x2 |x1)⋯p(xt |x1, ⋯, xt−1)

t (xt−n+1, xt−n+2, ⋯, xt−1)

xt ⊥ x≤t−n |xt−n+1, xt−n+2, ⋯, xt−1

p(xt |xt−1, ⋯, xt−n+1) = p(xs |xs−n+1, ⋯, xs−1) t, s

CMPUT 651 (Fall 2019)

Markov Assumptions

�

Direct parametrization:

Each multinomial distribution is directly parametrized

� (notation abuse)

p(x) = p(x1, ⋯, xt)
= p(x1)p(x2 |x1)⋯p(xt |x1, ⋯, xn−1)
≈ p(x1)p(x2 |x1)⋯p(xn |x1, ⋯, xt−n+1)

p(wn |w1, ⋯, wn−1)

CMPUT 651 (Fall 2019)

Parametrizing !p(w)

�

�

Questions:

• How many multinomial distributions?

• How many parameters in total?

p(x) = p(x1, ⋯, xn)
= p(x1)p(x2 |x1)⋯p(xn |x1, ⋯, xn−1)
≈ p(x1)p(x2 |x1)⋯p(xn |x1, ⋯, xt−n+1)

̂p(wn |w1, ⋯, wn−1) =
#w1⋯wn

#w1⋯wn−1

CMPUT 651 (Fall 2019)

N-gram Model

• #para � exp(�)

• Power-law distribution

- Severe data sparsity even if � is small

∝ n

n

CMPUT 651 (Fall 2019)

Problems of n-gram models

• Normal distribution

• Power-law distribution

p(x) ∝ exp(−τx2)

p(x) ∝ x−k

• Add-one smoothing

• Interpolation smoothing

• Backoff smoothing

Useful link: https://nlp.stanford.edu/~wcmac/papers/20050421-
smoothing-tutorial.pdf

CMPUT 651 (Fall 2019)

Smoothing Techniques

https://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf
https://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf
https://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf

• Is it possible to parametrize LM by NN?

• Yes

- � is a classification problem

- NNs are good at (esp. non-linear) classification

p(wn |w1, ⋯, wn−1)

CMPUT 651 (Fall 2019)

Parametrizing LM by NN

Feed-Forward Language Model

N.B. The Markov
assumption also holds.

Bengio, Yoshua, et al. "A
Neural Probabilistic Language
Model." JMLR. 2003.

CMPUT 651 (Fall 2019)

By product: Embeddings are pre-trained in a meaningful way

Recurrent Neural Language Model

● RNN keeps one or a few hidden states
● The hidden states change at each time step according to

the input

● RNN directly parametrizes

rather than

Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. In
INTERSPEECH, 2010.

CMPUT 651 (Fall 2019)

How can we use word embeddings?

● Embeddings demonstrate the internal structures of words
– Relation represented by vector offset

“man” – “woman” = “king” – “queen”
– Word similarity

● Embeddings can serve as the initialization of almost every
supervised task
– A way of pretraining
– N.B.: may not be useful when the training set is large enough

CMPUT 651 (Fall 2019)

[Mikolov+NAACL13]

Word Embeddings in our Brain

Huth, Alexander G., et al. "Natural speech reveals the semantic
maps that tile human cerebral cortex." Nature 532.7600 (2016):
453-458.

CMPUT 651 (Fall 2019)

“Somatotopic Embeddings” in our Brain

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007

CMPUT 651 (Fall 2019)

[8] Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007

CMPUT 651 (Fall 2019)

Complexity Concerns
● Time complexity

– Hierarchical softmax [1]
– Negative sampling: Hinge loss [2], Noisy contrastive estimation [3]

● Memory complexity
– Compressing LM [4]

● Model complexity
– Shallow neural networks are still too “deep.”
– CBOW, SkipGram [3]

[1] Mnih A, Hinton GE. A scalable hierarchical distributed language model. NIPS, 2009.

[2] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language
processing (almost) from scratch. JMLR, 2011.

[3] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in
vector space. arXiv preprint arXiv:1301.3781. 2013

[4] Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, Zhi Jin. "Compressing neural language models by
sparse word representations." In ACL, 2016.

CMPUT 651 (Fall 2019)

CMPUT 651 (Fall 2019)

Deep neural networks:
To be, or not to be? That is the question.

CBOW, SkipGram (word2vec)

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781. 2013

CMPUT 651 (Fall 2019)

Hierarchical Softmax and Negative
Contrastive Estimation

● HS

● NCE

[6] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781. 2013

CMPUT 651 (Fall 2019)

Tricks in Training Word Embeddings

● The # of negative samples?
– The more, the better.

● The distribution from which negative samples are
generated? Should negative samples be close to positive
samples?
– The closer, the better.

● Full softmax vs. NCE vs. HS vs. hinge loss?

CMPUT 651 (Fall 2019)

• Pretraining the embedding mapping for words is not enough

- E: Vocabulary � �

• Context info?

- Why not pre-train follow-up layers as well?

- E.g., ELMo, BERT

- Represent a word in a context, with LM-like pretraining

- Factorization of � is unnecessary

→ ℝn

p(w) = p(w1)p(w2 |w1)⋯p(wn |w1⋯wn−1)

CMPUT 651 (Fall 2019)

Recent Advances in Pretraining

• Node embeddings of a network

CMPUT 651 (Fall 2019)

Learning Embeddings of Other Stuff

[DeepWalk, KDD 2014]

• General criteria of embedding learning

- Atomic token represented by an embedding

- Training embeddings by predicting “context”

CMPUT 651 (Fall 2019)Mindmap
Representing

Words

Index
One-hot

Real-valued
embedding

Language modeling
• Max Pr(corpus)

One pretraining method

N-gram
• Markov assumption
• MLE = counting %
• Sparsity

- Para ! exp(n)
- Power law dist.

∝

NN-LM
• Predict the next word
• Embeddings pretrained
• Recent advance:

Pretrain LM

Embeddings in general
• Discrete token -> vector
• Learned by predicting

context

[E] *

• Neural LM: Bengio, Yoshua, et al. "A Neural Probabilistic
Language Model." JMLR. 2003.

• word2vec: Mikolov T, Chen K, Corrado G, Dean J. Efficient
estimation of word representations in vector space. arXiv
preprint arXiv:1301.3781. 2013

• ELMo: Peters, M.E., Neumann, M., Iyyer, M., Gardner, M.,
Clark, C., Lee, K. and Zettlemoyer, L., 2018. Deep
contextualized word representations. In NAACL, 2018.

• BERT: Devlin, J., Chang, M.W., Lee, K. and Toutanova, K.,
2018. Bert: Pre-training of deep bidirectional transformers for
language understanding. In NAACL, 2019.

• DeepWalk: Perozzi, B., Al-Rfou, R. and Skiena, S. DeepWalk:
Online learning of social representations. In KDD, 2014.

CMPUT 651 (Fall 2019)

Suggested Reading

CMPUT 651 (Fall 2019)

More References
• Graves, A., Abdel-rahman M., and Geoffrey H. Speech recognition with deep recurrent neural

networks. In ICASSP, 2013.

• Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations
of words and phrases and their compositionality. In NIPS, 2013.

• Li, W. Random texts exhibit Zipf's-law-like word frequency distribution. IEEE Transactions on
Information Theory, 38(6), 1842-1845, 1992.

• Bengio, Yoshua, et al. A Neural Probabilistic Language Model. JMLR. 2003.

• Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based
language model. In INTERSPEECH, 2010.

• Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional
transformers for language understanding. In NAACL, 2019.

• Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word
representations in vector space. arXiv preprint arXiv:1301.3781.

• Mikolov, T., Yih, W.T. and Zweig, G., June. Linguistic regularities in continuous space word
representations. In NAACL, 2013.

