Word Embeddings & Language Modeling

Lili Mou Imou@ualberta.ca Iili-mou.github.io

Last Lecture

- Logistic regression/Softmax: Linear classification
- Non-linear classification
 - Non-linear feature engineering
 - Non-linear kernel
 - Non-linear function composition
- Neural networks
 - Forward propagation: Compute activation
 - Backward propagation: Compute derivative (greedy dynamic programming)

Advantages of DL

- Work with raw data
 - Images processing: pixels

ImageNet

- Speech processing: frequency

[Graves+, ICASSP'13]

How about Language?

The raw input of language

I like the course

Problem: Words are discrete tokens!

Representing Words

Attempt#1:

- By index in the vocabulary

- Problem
 - Introducing artefacts
 - Order, metric, inner-product
 - Extreme non-linearity

Representing Words

Attempt#2: One-hot representation

X Separability doesn't generalize

X Metric is trivial

CEEE!

Metric in the Word Space

- Design a **metric** $d(\,\cdot\,,\,\cdot\,)$ to evaluate the "distance" of two words in terms of some aspect
 - E.g., semantic similarity

I'd like to have some pop/soda/water/fruit/rest

Traditional method: WordNet distance (if it's a metric).

STEEL P.

Metric in the Word Space

- Design a **metric** $d(\cdot, \cdot)$ to evaluate the "distance" of two words in terms of some aspect
 - E.g., semantic similarity

I'd like to have some pop/soda/water/fruit/rest

- A straightforward metric on one-hot vector:
 - Discrete metric

$$d(\mathbf{x}_i, \mathbf{x}_j) = 1$$
 if $\mathbf{x}_i = \mathbf{x}_j$, 0 otherwise

Non-informative

ID and One-Hot

ID representation

1 3 2 0

One-hot representation

 $\begin{pmatrix} 0 \\ 1 \\ 0 \\ 0 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \end{pmatrix} \quad \begin{pmatrix} 0 \\ 0 \\ 0 \\ 1 \\ 0 \end{pmatrix} \quad \begin{pmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{pmatrix}$

Dimension

Euclidean
Discrete
Learnable

One-dimensional

Artefact

Non-informative

Difficult

 $|\mathcal{V}|$ -dimensional

Non-informative

Non-informative

Possible but may not generalize Need to explore more

Something in Between

- Map a word to a low-dimensional space
 - Not as low as one-dimensional ID representation
 - Not as high as $|\mathcal{V}|$ -dimensional one-hot representation
- Attempt#3: Word vector representation (a.k.a., word embeddings)
 - Mapping a word to a vector
 - Equivalent to linear tranformation of one-hot vector

One-hot representation of word *i* (sparse)

Obtaining the Embedding Matrix

- Attemp#1: Treat as neural weights as usual
 - Random initialization & gradient descent
- Properties of the embedding matrix
 - Huge, $|\mathcal{V}| \times d_{NN}$ parameters (cf. weight for layerwise MLP)
 - Sparsely updated
- Nature of language
 - Power law distribution
- Good if corpus is large

One-hot representation of word *i* (sparse)

Embedding Learning

Attempt #2:

- Manually specifying the distance metric/inner-product, etc.
- Humans are not rational

Attempt #3:

- Pre-training on a massive corpus with a different (pre-training) objective
- Then, we can fine-tune those pre-trained embeddings in almost any specific task.

Pretraining Criterion

- Language Modeling
 - Given a corpus $\mathbf{x} = x_1 x_2 \cdots x_t$
 - Goal: Maximize $p(\mathbf{x})$
- Is it meaningful to view language sentences as a random variable?
 - Frequentist: Sentences are repetitions of i.i.d. experiments
 - Bayesian: Everything unknown is a random variable

Factorization

- $p(\mathbf{x}) = p(x_1, \dots, x_t)$ cannot be parametrized
- Factorizing a giant probability

$$p(\mathbf{x}) = p(x_1, \dots, x_t)$$

= $p(x_1)p(x_2 | x_1) \dots p(x_t | x_1, \dots, x_{t-1})$

- Still unable to parametrize, especially $p(x_n | x_1, \dots, x_{n-1})$
- Questions:
- Can we decompose any probabilistic distribution defined on x into this form? Yes.
- Is it necessary to decompose the distribution a probabilistic distribution in this form? No.

Markov Assumptions

$$p(\mathbf{x}) = p(x_1, \dots, x_t)$$

= $p(x_1)p(x_2 | x_1) \dots p(x_t | x_1, \dots, x_{t-1})$

- Independency
 - Given the current "state," independent with previous ones
 - State at step t: $(x_{t-n+1}, x_{t-n+2}, \dots, x_{t-1})$
 - $x_t \perp x_{\leq t-n} | x_{t-n+1}, x_{t-n+2}, \dots, x_{t-1}$
- Stationary property

$$- p(x_t | x_{t-1}, \dots, x_{t-n+1}) = p(x_s | x_{s-n+1}, \dots, x_{s-1}) \text{ for all } t, s$$

Parametrizing $p(\mathbf{w})$

$$p(\mathbf{x}) = p(x_1, \dots, x_t)$$

$$= p(x_1)p(x_2 | x_1) \dots p(x_t | x_1, \dots, x_{n-1})$$

$$\approx p(x_1)p(x_2 | x_1) \dots p(x_n | x_1, \dots, x_{t-n+1})$$

Direct parametrization:

Each multinomial distribution is directly parametrized

$$p(w_n | w_1, \dots, w_{n-1})$$
 (notation abuse)

N-gram Model

$$p(\mathbf{x}) = p(x_1, \dots, x_n)$$

$$= p(x_1)p(x_2 | x_1) \cdots p(x_n | x_1, \dots, x_{n-1})$$

$$\approx p(x_1)p(x_2 | x_1) \cdots p(x_n | x_1, \dots, x_{t-n+1})$$

$$\hat{p}(w_n | w_1, \dots, w_{n-1}) = \frac{\#w_1 \cdots w_n}{\#w_1 \cdots w_{n-1}}$$

Questions:

- How many multinomial distributions?
- How many parameters in total?

Problems of n-gram models

- #para $\propto \exp(n)$
- Power-law distribution
 - Severe data sparsity even if n is small

Words Proquency for Bigs Random Texts

Normal distribution

$$p(x) \propto \exp(-\tau x^2)$$

Power-law distribution

$$p(x) \propto x^{-k}$$

Smoothing Techniques

- Add-one smoothing
- Interpolation smoothing
- Backoff smoothing

Useful link: https://nlp.stanford.edu/~wcmac/papers/20050421-smoothing-tutorial.pdf

Parametrizing LM by NN

- Is it possible to parametrize LM by NN?
- Yes
 - $p(w_n | w_1, \dots, w_{n-1})$ is a classification problem
 - NNs are good at (esp. non-linear) classification

SEE F

Feed-Forward Language Model

By product: Embeddings are pre-trained in a meaningful way

Recurrent Neural Language Model

- RNN keeps one or a few hidden states
- The hidden states change at each time step according to the input

• RNN directly parametrizes $p(\boldsymbol{w}) = \prod_{t=1}^m p(w_t | \boldsymbol{w}_1^{t-1})$ rather than $p(\boldsymbol{w}) \approx \prod_{t=1}^m p\left(w_t | \boldsymbol{w}_{t-n+1}^{t-1}\right)$

Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. In INTERSPEECH, 2010.

How can we use word embeddings?

- Embeddings demonstrate the internal structures of words
 - Relation represented by vector offset

```
"man" – "woman" = "king" – "queen" [Mikolov+NAACL13]
```

- Word similarity
- Embeddings can serve as the initialization of almost every supervised task
 - A way of pretraining
 - N.B.: may not be useful when the training set is large enough

Word Embeddings in our Brain

Huth, Alexander G., et al. "Natural speech reveals the semantic maps that tile human cerebral cortex." Nature 532.7600 (2016): 453-458.

"Somatotopic Embeddings" in our Brain

Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007

Bear MF, Connors BW, Michael A. Paradiso. Neuroscience: Exploring the Brain. 2007

Complexity Concerns

- Time complexity
 - Hierarchical softmax [1]
 - Negative sampling: Hinge loss [2], Noisy contrastive estimation [3]
- Memory complexity
 - Compressing LM [4]
- Model complexity
 - Shallow neural networks are still too "deep."
 - CBOW, SkipGram [3]
- [1] Mnih A, Hinton GE. A scalable hierarchical distributed language model. NIPS, 2009.
- [2] Collobert R, Weston J, Bottou L, Karlen M, Kavukcuoglu K, Kuksa P. Natural language processing (almost) from scratch. JMLR, 2011.
- [3] Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013
- [4] Yunchuan Chen, Lili Mou, Yan Xu, Ge Li, Zhi Jin. "Compressing neural language models by sparse word representations." In ACL, 2016.

Deep neural networks: To be, or not to be? That is the question.

CBOW, SkipGram (word2vec)

Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013

Hierarchical Softmax and Negative Contrastive Estimation

HS

$$p(w|w_I) = \prod_{j=1}^{L(w)-1} \sigma\left([n(w, j+1) = \text{ch}(n(w, j))] \cdot v'_{n(w, j)}^{\mathsf{T}} v_{w_I} \right)$$

NCE

$$\log \sigma(v_{w_O}^{\prime} \mathsf{^{T}} v_{w_I}) + \sum_{i=1}^{k} \mathbb{E}_{w_i \sim P_n(w)} \left[\log \sigma(-v_{w_i}^{\prime} \mathsf{^{T}} v_{w_I}) \right]$$

Tricks in Training Word Embeddings

- The # of negative samples?
 - The more, the better.
- The distribution from which negative samples are generated? Should negative samples be close to positive samples?
 - The closer, the better.

Full softmax vs. NCE vs. HS vs. hinge loss?

Recent Advances in Pretraining

- Pretraining the embedding mapping for words is not enough
 - E: Vocabulary $\to \mathbb{R}^n$
- Context info?
 - Why not pre-train follow-up layers as well?
 - E.g., ELMo, BERT
 - Represent a word in a context, with LM-like pretraining
 - Factorization of $p(\mathbf{w}) = p(w_1)p(w_2|w_1)\cdots p(w_n|w_1\cdots w_{n-1})$ is unnecessary

Learning Embeddings of Other Stuff

Node embeddings of a network

[DeepWalk, KDD 2014]

- General criteria of embedding learning
 - Atomic token represented by an embedding
 - Training embeddings by predicting "context"

Suggested Reading

- Neural LM: Bengio, Yoshua, et al. "A Neural Probabilistic Language Model." JMLR. 2003.
- word2vec: Mikolov T, Chen K, Corrado G, Dean J. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781. 2013
- **ELMo:** Peters, M.E., Neumann, M., Iyyer, M., Gardner, M., Clark, C., Lee, K. and Zettlemoyer, L., 2018. Deep contextualized word representations. In *NAACL*, 2018.
- BERT: Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. In *NAACL*, 2019.
- **DeepWalk:** Perozzi, B., Al-Rfou, R. and Skiena, S. DeepWalk: Online learning of social representations. In KDD, 2014.

More References

- Graves, A., Abdel-rahman M., and Geoffrey H. Speech recognition with deep recurrent neural networks. *In ICASSP*, 2013.
- Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., & Dean, J. (2013). Distributed representations of words and phrases and their compositionality. In *NIPS*, 2013.
- Li, W. Random texts exhibit Zipf's-law-like word frequency distribution. *IEEE Transactions on Information Theory*, 38(6), 1842-1845, 1992.
- Bengio, Yoshua, et al. A Neural Probabilistic Language Model. JMLR. 2003.
- Mikolov T, Karafiát M, Burget L, Cernocký J, Khudanpur S. Recurrent neural network based language model. In INTERSPEECH, 2010.
- Devlin, J., Chang, M.W., Lee, K. and Toutanova, K., 2018. Bert: Pre-training of deep bidirectional transformers for language understanding. In NAACL, 2019.
- Mikolov, T., Chen, K., Corrado, G. and Dean, J., 2013. Efficient estimation of word representations in vector space. arXiv preprint arXiv:1301.3781.
- Mikolov, T., Yih, W.T. and Zweig, G., June. Linguistic regularities in continuous space word representations. In NAACL, 2013.