
Seq2Seq Models
&

Attention Mechanism

Lili Mou

lmou@ualberta.ca

lili-mou.github.io

CMPUT 651 (Fall 2019)

mailto:lmou@ualberta.ca
http://lili-mou.github.io

CMPUT 651 (Fall 2019)

Seq2Seq
• Question:

 Why do we feed back the generated words?

 How can we train Seq2Seq models?

 How do we do inference?

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to
sequence learning with neural networks." In NIPS, 2014.

CMPUT 651 (Fall 2019)

Why do we feed back the generated words?
• First thought: Feeding back is unnecessary

- � is predicted from �

- � depends on �

- � depends on �

y2 h2

h2 h1

y1 h1

h1 h2

y1 y2

� brings no informationy1} ⇒

CMPUT 651 (Fall 2019)

Multi-Modal Distribution
• Continuous distribution

• Discrete distribution

- Image in some embedding space, sentences are multi-
modal distributed

- “A beats B” vs. “B is beaten by A”

h1 h2

y1 y2

CMPUT 651 (Fall 2019)

Training Seq2Seq Models

• Decoder’s input layer

- Attempt#1: Feed in the predicted words

- Attempt#2: Feed in the groundtruth word

- Scheduled sampling

• Loss �

- Suppose we known “groundtruth” target sequence

- Recall BP with multiple losses

J = J1 + J2 + ⋯ + JT

CMPUT 651 (Fall 2019)

Inference
• Decoder’s input layer

- Feed in the predicted words

• When do we terminate?

- Include a special token “EOS” (end of sequence) in training

- If “EOS” is predicted, the sentence is terminated by def

EOS

CMPUT 651 (Fall 2019)

Caveat
• Batch implementation

- Padding EOS or 0 vector=> Incorrect

- Masking => Correct

EOS

h̃t = RNN(ht−1, xt)

ht = (1 − m)ht−1 + mh̃t

• Implementation should always be equivalent to math derivations

CMPUT 651 (Fall 2019)

Inference Criteria
• Single-output classification

- Max a posteriori inference � Minimal empirical loss

- �

• Sentence generation

- If we want to generate the “best” sentence:
�

- Is greedy correct? �

- The cost of exhaustive search?

⇔

y = argmax p(y |x)

y = argmax p(y |x)

yi = argmax p(yi |y<i, x)

EOS

CMPUT 651 (Fall 2019)

Greedy vs. Exhaustive Search

Greedy Beam
Search

Exhaustive
search

For each
step

Pick the best
word

Try a few
best words

Try every
word

Maintain One
sequence

Several
good partial
sequences

All possible
combinations

EOS

CMPUT 651 (Fall 2019)

Beam Search

EOS

B=2

CMPUT 651 (Fall 2019)

Beam Search

EOS

B=2

EOS

CMPUT 651 (Fall 2019)

Beam Search

EOS

B=2

CMPUT 651 (Fall 2019)

Beam Search

EOS

• A list of best partial sequences � []

• For every decoding step �

- For every partial seq � and every word �

• Expand � as �

- � top- � expanded subsequences among all �

• Return the most probable sequence in the beam

 (existing a terminated sequence better than all �)

S

t

s ∈ S w ∈ 𝒱

s (s, w)

S = B (s, w)

s ∈ S

CMPUT 651 (Fall 2019)

Issues with Autoregressiveness

EOS

• Error accumulation

- 1st word good, 2nd worse, 3rd even worse, etc.

• Label bias

- Not “label imbalance” problem

- BS bias towards high probable words at the beginning

- Locally normalized models prefer high probable (but
possibly unimportant) words

CMPUT 651 (Fall 2019)

Information Bottleneck

• Last hidden state

- Has to capture all source information

• Average/Mean pooling

- Still loses information

- Not directly related to the current decoded word

EOS

CMPUT 651 (Fall 2019)

Attention Mechanism

• Dynamically aligning words

- Average pooling => weighted pooling

- Alignment dependents on the current word to be
generated

- Alignment to a particular source word obviously also
dependents on that source word itself

EOS

Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine
translation by jointly learning to align and translate. ICLR, 2015.

CMPUT 651 (Fall 2019)

EOS

Convex vs Linear Weighting

h1

h2

h3
h4

h5

• Average pooling

• Weighted pooling

c =
1
N

h1 + ⋯ +
1
N

hN

c = α1h1 + ⋯ + αNhN

What are � ?α1, ⋯, αN

CMPUT 651 (Fall 2019)

EOS

Computing Attention

s(t)
j = s(h(tar)

j , h(src)
i)

α̃(t)
j = exp(s(t)

j)

α(t)
j =

exp(s(t)
j)

∑j′�exp(s(t)
j′�)

Score (-Energy)

Unnormalized measure

Probability

Denominator: Partition function

s(t)
j = (h(tar)

j)⊤h(src)
i

s(t)
j = (h(tar)

j)⊤Wh(src)
i

Inner-product

Metric learning

Neural layer

s(t)
j = u⊤f(W[h(tar)

j ; h(src)
i])

CMPUT 651 (Fall 2019)

Where are we?

 Picking the best

 (how do you know)

 Average
pooling

 Max pooling

 Attention: in the
convex hull

Linear combination:
anywhere in the space

This is not too wrong.

“Meaning is use” —Wittgenstein

In machine learning,

how you train is how you predict

CMPUT 651 (Fall 2019)

Attention as Soft Alignment

Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine translation
by jointly learning to align and translate. ICLR, 2015.

CMPUT 651 (Fall 2019)

Traditional Phrase-Based MT

Explicitly modeling alignment

IBM Models 1—5: A spectrum of simplifications

Brown, P.F., Pietra, V.J.D., Pietra, S.A.D. and Mercer, R.L., 1993.
The mathematics of statistical machine translation: Parameter
estimation. Computational Linguistics, 19(2), pp.263-311.

CMPUT 651 (Fall 2019)

Attention is all you need

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J.,
Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin,
I. Attention is all you need. In NIPS, 2017.

• Information processed by multi-head attention

• Sinusoidal position embedding

- BERT uses learned position embedding

Transformer
(Horrible terminology)

CMPUT 651 (Fall 2019)

• Attention probability is essentially a softmax

- with varying # of target classes

• Attention content is aggregating information by weighted sum

- Especially # of entities may change

Attention beyond MT

CMPUT 651 (Fall 2019)

More Applications

• Dialogue systems

• Summarization

• Paraphrase generation

• etc.

Encoder does not have to be a
sequence model

• Table-to-test generation

• Graph-to-text generation

Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian Li, Baobao
Chang, Zhifang Sui. Order-planning neural text generation from
structure data. In AAAI, 2018.

CMPUT 651 (Fall 2019)

Weston, Jason, Sumit Chopra, and Antoine Bordes. Memory
networks. In ICLR, 2015.

Sukhbaatar, S., Weston, J. and Fergus, R., 2015. End-to-end
memory networks. In NIPS, 2015.

Memory-Based Network
Question answering (synthetic dataset)

CMPUT 651 (Fall 2019)

Weston, Jason, Sumit Chopra, and Antoine Bordes. Memory
networks. In ICLR, 2015.

Sukhbaatar, S., Weston, J. and Fergus, R., 2015. End-to-end
memory networks. In NIPS, 2015.

Memory-Based Network
Basically a multi-layer attention network

CMPUT 651 (Fall 2019)

Neural Turing Machine
Chomsky
hierarchy Grammar Language Automata Neural

analog

Type-3 Regular
expression

Finite state
machine RNN

Type-2 Context-free ND Pushdown
automata

Type-1 Context-
sensitive Esoteric

Type-0 Recursive
enumerable

Turing
machine NTM

A → aB |a

A → a

αAβ → αγβ

αAβ → γ

CMPUT 651 (Fall 2019)

• If states are discrete, RNN is FSM

• # distinct states � exp(units)

• However, they are not free states

- Transitions subject to a parametric function

• Unknown (at least to me) how real-valued states add to
computational power

• At least, using denseness of real numbers to express
potentially infinite steps of recursion is inefficient

∝

A Rough Thought on RNN Computational Power

CMPUT 651 (Fall 2019)

• Augment RNN with a memory pad

• Read & write by memory addressing

• Attention-based memory addressing

- Content-based addressing

- Allocation-based addressing

- Link-based addressing

Graves, A., et al., 2016. Hybrid
computing using a neural network
with dynamic external memory.
Nature, 538(7626), p.471.

Neural Turing Machine

CMPUT 651 (Fall 2019)

Neural Turing Machine
Content-based memory addressing

Temporal linkage-based memory addressing

Dynamic memory allocation

• Memory addressing is purely hypothetical

• May not learn true “programs”

• Thoughts for future work

- Learn from restricted class of automata (e.g., PDA)

- Make intermediate execution results Markov blanket

Problems

CMPUT 651 (Fall 2019)

Memory for Domain Adaptation

Asghar, N., Mou, L., Selby, K.A., Pantasdo, K.D., Poupart, P.
and Jiang, X., 2018. Progressive Memory Banks for Incremental
Domain Adaptation. arXiv preprint arXiv:1811.00239.

CMPUT 651 (Fall 2019)

Conclusion & Take-Home Msg
• Sequence-to-sequence training

- Training: Step-by-step supervised learning

- Inference: Greedy, Beam search, sampling

• Attention

- Adaptive weighted sum of source information

- Alignment in MT

- Aggregated information

CMPUT 651 (Fall 2019)

Suggested Reading
• Automata theory

• Scheduled sampling. Bengio, Samy, Oriol Vinyals, Navdeep Jaitly,
and Noam Shazeer. "Scheduled sampling for sequence prediction with
recurrent neural networks." In Advances in Neural Information
Processing Systems, pp. 1171-1179. 2015.

• Phrase-based MT. Brown, P.F., Pietra, V.J.D., Pietra, S.A.D. and
Mercer, R.L., 1993. The mathematics of statistical machine translation:
Parameter estimation. Computational Linguistics, 19(2), pp.263-311.

• NTM. Graves, A., et al., 2016. Hybrid computing using a neural
network with dynamic external memory. Nature, 538(7626), p.471.

CMPUT 651 (Fall 2019)

More References
• Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to sequence learning with neural

networks." In NIPS, 2014.

• Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., Jones, L., Gomez, A.N., Kaiser, Ł. and

Polosukhin, I. Attention is all you need. In NIPS, 2017.

• Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian Li, Baobao Chang, Zhifang Sui.

Order-planning neural text generation from structure data. In AAAI, 2018.

• Weston, Jason, Sumit Chopra, and Antoine Bordes. Memory networks. In ICLR, 2015.

• Sukhbaatar, S., Weston, J. and Fergus, R., 2015. End-to-end memory networks. In NIPS,

2015.

• Asghar, N., Mou, L., Selby, K.A., Pantasdo, K.D., Poupart, P. and Jiang, X., 2018.

Progressive Memory Banks for Incremental Domain Adaptation. arXiv preprint arXiv:
1811.00239.

