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Seq2Seq
• Question:  

 Why do we feed back the generated words?


 How can we train Seq2Seq models?


 How do we do inference?

Sutskever, Ilya, Oriol Vinyals, and Quoc V. Le. "Sequence to 
sequence learning with neural networks." In NIPS, 2014.
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Why do we feed back the generated words?
• First thought: Feeding back is unnecessary


- �  is predicted from � 


- �  depends on � 


- �  depends on �

y2 h2

h2 h1

y1 h1

h1 h2

y1 y2

�  brings no informationy1} ⇒
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Multi-Modal Distribution
• Continuous distribution 

• Discrete distribution 

- Image in some embedding space, sentences are multi-
modal distributed


- “A beats B” vs. “B is beaten by A”

h1 h2

y1 y2
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Training Seq2Seq Models

• Decoder’s input layer

- Attempt#1: Feed in the predicted words

- Attempt#2: Feed in the groundtruth word

- Scheduled sampling 


• Loss � 


- Suppose we known “groundtruth” target sequence

- Recall BP with multiple losses

J = J1 + J2 + ⋯ + JT
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Inference
• Decoder’s input layer


- Feed in the predicted words


• When do we terminate?

- Include a special token “EOS” (end of sequence) in training


- If “EOS” is predicted, the sentence is terminated by def

EOS
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Caveat
• Batch implementation


- Padding EOS or 0 vector=> Incorrect

- Masking => Correct

EOS

h̃t = RNN(ht−1, xt)

ht = (1 − m)ht−1 + mh̃t

• Implementation should always be equivalent to math derivations
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Inference Criteria
• Single-output classification


- Max a posteriori inference �  Minimal empirical loss


- � 


• Sentence generation


- If we want to generate the “best” sentence: 
� 


- Is greedy correct? � 


- The cost of exhaustive search?

⇔

y = argmax p(y |x)

y = argmax p(y |x)

yi = argmax p(yi |y<i, x)

EOS
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Greedy vs. Exhaustive Search

Greedy Beam 
Search

Exhaustive 
search

For each 
step

Pick the best 
word

Try a few 
best words

Try every 
word

Maintain One 
sequence

Several 
good partial 
sequences

All possible 
combinations

EOS
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Beam Search

EOS

B=2
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Beam Search

EOS

B=2

EOS
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Beam Search

EOS

B=2
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Beam Search

EOS

• A list of best partial sequences �  [ ]


• For every decoding step � 


- For every partial seq �  and every word � 


• Expand �  as � 


-  � top- �  expanded subsequences among all � 


• Return the most probable sequence in the beam


 (existing a terminated sequence better than all � ) 

S

t

s ∈ S w ∈ 𝒱

s (s, w)

S = B (s, w)

s ∈ S
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Issues with Autoregressiveness

EOS

• Error accumulation


- 1st word good, 2nd worse, 3rd even worse, etc.


• Label bias


- Not “label imbalance” problem


- BS bias towards high probable words at the beginning


- Locally normalized models prefer high probable (but 
possibly unimportant) words
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Information Bottleneck

• Last hidden state


- Has to capture all source information


• Average/Mean pooling


- Still loses information


- Not directly related to the current decoded word

EOS
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Attention Mechanism

• Dynamically aligning words


- Average pooling => weighted pooling 

- Alignment dependents on the current word to be 
generated


- Alignment to a particular source word obviously also 
dependents on that source word itself

EOS

Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine 
translation by jointly learning to align and translate. ICLR, 2015.
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EOS

Convex vs Linear Weighting

h1

h2

h3
h4

h5

• Average pooling


• Weighted pooling


c =
1
N

h1 + ⋯ +
1
N

hN

c = α1h1 + ⋯ + αNhN

What are � ?α1, ⋯, αN



CMPUT 651 (Fall 2019)

EOS

Computing Attention

s(t)
j = s(h(tar)

j , h(src)
i )

α̃(t)
j = exp(s(t)

j )

α(t)
j =

exp(s(t)
j )

∑j′�exp(s(t)
j′� )

Score (-Energy)

Unnormalized measure

Probability

Denominator: Partition function

s(t)
j = (h(tar)

j )⊤h(src)
i

s(t)
j = (h(tar)

j )⊤Wh(src)
i

Inner-product

Metric learning

Neural layer

s(t)
j = u⊤f(W[h(tar)

j ; h(src)
i ])
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Where are we?

 Picking the best

 (how do you know)

 Average 
pooling

 Max pooling

 Attention: in the 
convex hull

Linear combination:  
anywhere in the space

This is not too wrong. 

“Meaning is use” —Wittgenstein

In machine learning, 

how you train is how you predict
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Attention as Soft Alignment

Bahdanau, D., Cho, K. and Bengio, Y., 2014. Neural machine translation 
by jointly learning to align and translate. ICLR, 2015.
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Traditional Phrase-Based MT

Explicitly modeling alignment

IBM Models 1—5: A spectrum of simplifications

Brown, P.F., Pietra, V.J.D., Pietra, S.A.D. and Mercer, R.L., 1993. 
The mathematics of statistical machine translation: Parameter 
estimation. Computational Linguistics, 19(2), pp.263-311.
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Attention is all you need

Vaswani, A., Shazeer, N., Parmar, N., Uszkoreit, J., 
Jones, L., Gomez, A.N., Kaiser, Ł. and Polosukhin, 
I. Attention is all you need. In NIPS, 2017.

• Information processed by multi-head attention


• Sinusoidal position embedding


- BERT uses learned position embedding

Transformer
(Horrible terminology)
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• Attention probability is essentially a softmax


- with varying # of target classes


• Attention content is aggregating information by weighted sum


- Especially # of entities may change

Attention beyond MT
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More Applications

• Dialogue systems

• Summarization

• Paraphrase generation

• etc.


Encoder does not have to be a 
sequence model

• Table-to-test generation

• Graph-to-text generation


Lei Sha, Lili Mou, Tianyu Liu, Pascal Poupart, Sujian Li, Baobao 
Chang, Zhifang Sui. Order-planning neural text generation from 
structure data. In AAAI, 2018.
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Weston, Jason, Sumit Chopra, and Antoine Bordes. Memory 
networks. In ICLR, 2015.

Sukhbaatar, S., Weston, J. and Fergus, R., 2015. End-to-end 
memory networks. In NIPS, 2015.

Memory-Based Network
Question answering (synthetic dataset)
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Weston, Jason, Sumit Chopra, and Antoine Bordes. Memory 
networks. In ICLR, 2015.

Sukhbaatar, S., Weston, J. and Fergus, R., 2015. End-to-end 
memory networks. In NIPS, 2015.

Memory-Based Network
Basically a multi-layer attention network
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Neural Turing Machine
Chomsky 
hierarchy Grammar Language Automata Neural 

analog

Type-3 Regular 
expression

Finite state 
machine RNN

Type-2 Context-free ND Pushdown 
automata

Type-1 Context-
sensitive Esoteric

Type-0 Recursive 
enumerable

Turing 
machine NTM

A → aB |a

A → a

αAβ → αγβ

αAβ → γ
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• If states are discrete, RNN is FSM


• # distinct states �  exp(units)


• However, they are not free states


- Transitions subject to a parametric function


• Unknown (at least to me) how real-valued states add to 
computational power


• At least, using denseness of real numbers to express 
potentially infinite steps of recursion is inefficient

∝

A Rough Thought on RNN Computational Power
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• Augment RNN with a memory pad


• Read & write by memory addressing


• Attention-based memory addressing


- Content-based addressing


- Allocation-based addressing


- Link-based addressing


Graves, A., et al., 2016. Hybrid 
computing using a neural network 
with dynamic external memory. 
Nature, 538(7626), p.471.

Neural Turing Machine
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Neural Turing Machine
Content-based memory addressing

Temporal linkage-based memory addressing

Dynamic memory allocation

• Memory addressing is purely hypothetical

• May not learn true “programs”

• Thoughts for future work


- Learn from restricted class of automata (e.g., PDA)

- Make intermediate execution results Markov blanket

Problems
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Memory for Domain Adaptation

Asghar, N., Mou, L., Selby, K.A., Pantasdo, K.D., Poupart, P. 
and Jiang, X., 2018. Progressive Memory Banks for Incremental 
Domain Adaptation. arXiv preprint arXiv:1811.00239.
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Conclusion & Take-Home Msg
• Sequence-to-sequence training


- Training: Step-by-step supervised learning


- Inference: Greedy, Beam search, sampling


• Attention


- Adaptive weighted sum of source information


- Alignment in MT


- Aggregated information
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Suggested Reading
• Automata theory 

• Scheduled sampling. Bengio, Samy, Oriol Vinyals, Navdeep Jaitly, 
and Noam Shazeer. "Scheduled sampling for sequence prediction with 
recurrent neural networks." In Advances in Neural Information 
Processing Systems, pp. 1171-1179. 2015.


• Phrase-based MT. Brown, P.F., Pietra, V.J.D., Pietra, S.A.D. and 
Mercer, R.L., 1993. The mathematics of statistical machine translation: 
Parameter estimation. Computational Linguistics, 19(2), pp.263-311.


• NTM. Graves, A., et al., 2016. Hybrid computing using a neural 
network with dynamic external memory. Nature, 538(7626), p.471.
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