Hidden Markov Model

Lili Mou Imou@ualberta.ca Iili-mou.github.io

CMPUT 651 (Fall 2019)

Drawbacks of LR/Softmax

Classification is non-linear

- May not even represented as fixed-dimensional features
- Do not consider the relationship of labels within one data sample

The lecture is really boring determiner? verb adverb adjective

Three professors lecture IntroNLP

CardinalNumber Noun ? ProperNoune

https://www.merriam-webster.com/dictionary/lecture

lecture verb

lectured; lecturing \ 'lek-chə-riŋ ❶, 'lek-shriŋ\

Definition of *lecture* **(Entry 1 of 2)**

1 : a discourse given before an audience or (Definition of *lecture* (Entry 2 of 2)

2 : a formal reproof <u>intransitive verb</u>

Motivation

- One data sample may have different labels, e.g.,
 - POS tagging
 - Parsing
 - Sentence generation
 - etc.

Markov Model

- Finite states $S = \{s_1, s_2, \dots, s_n\}$
- You start from a state following the distribution $\pi = [\pi_1, \pi_2, \cdots, \pi_n]$
- Transition only depends on the current state $\mathbb{P}[S^{(t)} = s_i | S^{(t-1)} = s_j]$
- Examples
 - Weather
 - N-gram model

Bayesian Network in General

- Directed Acyclic Graph $G = \langle V, E \rangle$
 - Each node is a random variable
 - Each edge $a \rightarrow b$ represents that a is a direct "cause" of b
 - The joint probability can be represented as

$$p(x_1, \dots, x_n) = \prod_{i=1}^{n} p(x_i | \operatorname{Par}(x_i))$$
All parents

$$p(X, Y, Z) = p(X|Y)p(X|Z)$$

Wrong. Factorization only happens to the LHS of the conditional bar.

$$p(R, W) = p(R)p(W|R)$$

$$p(R, W) = p(W)p(W|R)$$

does not hold in general

 $Y \perp Z \mid X$

Written assignment: Prove.

Hint: By definition.

By the property of BNs, $Y \perp Z \mid X$. $\Longrightarrow 0$ mark

Cause and effect cannot be formally defined.

- In BN, "→" refers to conditional probability
- In logics, "→" refers to entailment

Cause and effect cannot be formally defined.

But with our intuition of cause and effect, we can simplify our model.

Markov Model

Hidden Markov Model

Hidden Markov Model

$$p(s_1, \cdots, s_T, x_1, \cdots x_T) = p(s_1) \prod_{t=2}^T p(s_t | s_{t-1}) \prod_{t=1}^T p(x_t | s_t)$$
 Initial State Prob. Transition Prob. Emission Prob.
$$n^2 \qquad v \cdot n$$

Example of HMM

Maximum Likelihood Estimation

- Training if fully observable
 - E.g., annotated by experts

$$p(s_1, \dots, s_T, x_1, \dots x_T) = p(s_1) \prod_{t=2}^{I} p(s_t | s_{t-1} \prod_{t=1}^{I} p(x_t | s_t)$$

$$\log p(\cdot) = \log p(s_1) + \sum_{t=2}^{T} \log p(s_t | s_{t-1}) + \sum_{t=1}^{T} \log p(x_t | s_t)$$

Parameters factorize

MLE for Multinomial Distribution

- Counting
 - With one constraint $\pi_1 + \cdots \pi_n = 1$
 - You need to explicitly represent $\pi_n = 1 \pi_1 \dots \pi_{n-1}$
 - Or, you apply the Lagrangian multiplier method

$$\log p(\cdot) = \log p(s_1) + \sum_{t=2}^{T} \log p(s_t | s_{t-1}) + \sum_{t=1}^{T} \log p(x_t | s_t)$$

$$\pi_i = \frac{\sum_{i=1}^M \mathbb{I}\{S_1 = i\}}{M} = \frac{\text{\# of samples that start with stae } i}{M}$$

MLE for Multinomial Distribution

- Counting
 - With one constraint $\pi_1 + \cdots \pi_n = 1$
 - You need to explicitly represent $\pi_n = 1 \pi_1 \dots \pi_{n-1}$
 - Or, you apply the Lagrangian multiplier method

$$\log p(\cdot) = \log p(s_1) + \sum_{t=2}^{T} \log p(s_t | s_{t-1}) + \sum_{t=1}^{T} \log p(x_t | s_t)$$

Written assignment

Inference

- Suppose the model is full trained
- During prediction, we observe x_1, \dots, x_T
 - How can we know the states s_1, \dots, s_T that best explain x_1, \dots, x_T ?

Inference Criteria

- We would like to predict the best (most probable) states
- Max a posteriori inference

$$s_1, \dots, s_T = \underset{s_1, \dots, s_T}{\operatorname{argmax}} p(s_1, \dots, s_T | x_1, \dots, x_T)$$

$$= \underset{s_1, \dots, s_T}{\operatorname{argmax}} p(s_1, \dots, s_T, x_1, \dots, x_T)$$

Simplified notation may be used:

$$x_{1:t}, \quad x_1^t$$

Recall Beam Search

Search in HMM

Some sub-structures are shared in different paths

Markov Blanket

$$p(s_{1:T}, x_{1:T}) = \prod_{i=1}^{n} \left[p(s_i | s_{i-1}) p(x_i | s_i) \right]$$

For simplicity, the first state's probability is denoted as

$$\mathbb{P}[s_1] \stackrel{\Delta}{=} p(s_1 \,|\, s_0)$$

Key observation:

Factorized probability is local.

- $s_{i:T}, x_{i:T}$ only depends on s_{i-1}
- but not $s_{\leq i-2}$, $x_{\leq i-1}$

Recursion Variable

$$s_1, \dots, s_T = \underset{s_1, \dots, s_T}{\operatorname{argmax}} p(s_1, \dots, s_T, x_1, \dots, x_T)$$

$$p(s_{1:T}, x_{1:T}) = \prod_{i=1}^{n} \left[p(s_i | s_{i-1}) p(x_i | s_i) \right]$$

- Attempt#1: $\max_{s_{1}, t} p(x_1, \dots, x_i, s_t)$
 - But best choice for every step ≠ best choice globally
- Attempt#2: $\max_{s_1, t-1} p(x_1, \dots, x_t, s_t)$, for s_t being any state

$$M[t][j] \stackrel{\Delta}{=} \max_{S_{1:t-1}} p(x_{1:t}, S_t = j)$$

$$M[t][j] \stackrel{\Delta}{=} \max_{1:t-1} p(x_{1:t}, S_t = j)$$

Initialization

$$M[1][j] = \max_{\varnothing} p(x_1, S_1 = j)$$
 [nothing]
= $p(x_1, S_1 = j)$
= $p(S_1 = j)p(x_1 | S_1 = j)$
= $\pi_j \cdot p(x_1 | s_1 = j)$ [both]

[nothing to choose for "max"]

[both are model parameters]

$$M[t][j] \stackrel{\Delta}{=} \max_{1:t-1} p(x_{1:t}, S_t = j)$$

Recursion Step

 $(\forall j)$

- Assume $M[t-1][j] = \max_{s_{1:t-2}} p(x_{1:t-1}, S_{t-1} = j)$ known
- Goal: Figure out M[t][j]

$$\begin{split} M[t][j] &= \max_{s_{1:t-1}} p(x_1, \dots, x_t, S_t = j) \\ &= \max_{s_{1:t-1}} p(x_1, \dots, x_{t-1}, s_{t-1}) p(s_t = j \mid s_{t-1}) p(x_t \mid s_j) \\ &= \max_{s_t} \max_{s_{1:t-2}} p(x_1, \dots, x_{t-1}, s_{t-1}) p(s_t = j \mid s_{t-1}) p(x_t \mid s_j) \end{split}$$

Known by recursion assumption $M[t-1][s_t]$

$$M[t][j] \stackrel{\Delta}{=} \max_{1:t-1} p(x_{1:t}, S_t = j)$$

Recursion Step

- Assume $M[t-1][j] = \max_{S_{1:t-2}} p(x_{1:t-1}, S_{t-1} = j)$ known
- Goal: Figure out M[t][j] ($\forall j$)

$$M[t][j] = \max_{s_{1:t-1}} p(x_1, \dots, x_t, S_t = j)$$

$$= \max_{s_{1:t-1}} p(x_1, \dots, x_{t-1}, s_{t-1}) p(S_t = j \mid s_{t-1}) p(x_t \mid S_t = j)$$

$$= \max_{s_t} \max_{s_{1:t-2}} p(x_1, \dots, x_{t-1}, s_{t-1}) p(S_t = j \mid s_{t-1}) p(x_t \mid S_t = j)$$

Known by recursion assumption $M[t-1][s_t]$

Illustration

$$M[t][j] \stackrel{\Delta}{=} \max_{1:t-1} p(x_{1:t}, S_t = j)$$

Recursion Step

- Assume $M[t-1][j] = \max_{S_{1:t-2}} p(x_{1:t-1}, S_{t-1} = j)$ known
- Goal: Figure out M[t][j] $(\forall j)$

$$M[t][j] = \max_{S_{t-1}} \{ \rightarrow \rightarrow \rightarrow \nearrow \downarrow \}$$

Termination: M[T][j] is done $(\forall j)$

Backtracking the States

$$M[t][j] \stackrel{\Delta}{=} \max_{1:t-1} p(x_{1:t}, S_t = j)$$

$$B[t][j] = \operatorname{argmax}_{i} \{ M[t-1][i] \cdot P(S_t = j | S_{t-1} = i) \cdot P(x_t | S_j) \}$$

$$M[t][j] = \max_{S_{t-1}} \{ \rightarrow \rightarrow \rightarrow \nearrow \downarrow \}$$

Written Assignment

- Suppose an HMM is given
 - States $S = \{1, \dots, n\}$
 - Parameters π_{j} , $P(S_{t-1} = j | S_t = i)$, $P(x_t | S_t = j)$ known
- Goal
 - To find the state and output sequences of length T that have the highest jointly probability

$$s_{1:T}, x_{1:T} = \operatorname{argmax} p(s_{1:T}, x_{1:T})$$

$$s_{1:T}, x_{1:T}$$

- Think of the problem $x_{1:T} = \operatorname{argmax}_{x_{1:T}} p(x_{1:T})$ [optional]

Written Assignment

- Requirements
 - Design a DP algorithm, stating the initialization, recursion, and termination of the algorithm

(don't forget backpointers)

- For any recursion variable, a clear definition is needed
- The recursion step should be supported by derivation
- Give pseudo code that generates $s_{1:T}, x_{1:T}$

Written Assignments

- Every week, we solve problems that have been mentioned in Monday's and Wednesday's lectures.
- Every assignment is due on next Monday
- Automatically extended to next Wednesday [before class]
- Further extensions require good reasons (self-approved extension may result in 0 mark).

Show that $Y \perp Z \mid X$ does not hold in general for BN (1), but $Y \perp Z \mid X$ must be true for BN (2).

Note: If your solution involves showing some example, please provide your own example.

Give the MLE estimation for HMM transition and emission probabilities

- Figure out what are the parameters
- Give the formula to estimate these parameters (either by indicator functions or natural language expressions)

It's strongly recommended to derive MLE for multinomial distributions, but is optional for this assignment.

$$\log p(\cdot) = \log p(s_1) + \sum_{t=2}^{T} \log p(s_t | s_{t-1}) + \sum_{t=1}^{T} \log p(x_t | s_t)$$

$$\pi_i = \frac{\sum_{i=1}^M \mathbb{I}\{S_1 = i\}}{M} = \frac{\text{\# of samples that start with state } i}{M}$$

- Suppose an HMM is given
 - States $S = \{1, \dots, n\}$
 - Parameters π_{j} , $P(S_{t-1} = j | S_t = i)$, $P(x_t | S_t = j)$ known
- Goal
 - To find the state and output sequences of length T that have the highest jointly probability

$$s_{1:T}, x_{1:T} = \operatorname{argmax} p(s_{1:T}, x_{1:T})$$

$$s_{1:T}, x_{1:T}$$

- Think of the problem $x_{1:T} = \operatorname{argmax}_{x_{1:T}} p(x_{1:T})$ [optional]

- Requirements
 - Design a DP algorithm, stating the initialization, recursion, and termination of the algorithm

(don't forget back pointers)

- For any recursion variable, a clear definition is needed
- The recursion step should be supported by derivation
- Give pseudo code that generates $s_{1:T}, x_{1:T}$

Thank you!

Q&A

