
Hidden Markov Model

Lili Mou

lmou@ualberta.ca

lili-mou.github.io

CMPUT 651 (Fall 2019)

mailto:lmou@ualberta.ca
http://lili-mou.github.io

CMPUT 651 (Fall 2019)

😇😇😇

CMPUT 651 (Fall 2019)

• Classification is non-linear

- May not even represented as fixed-dimensional features

• Do not consider the relationship of labels within one data
sample

Drawbacks of LR/Softmax

The lecture is really boring

https://www.merriam-webster.com/dictionary/lecture

 determiner ? verb adverb adjective

Three professors lecture IntroNLP
 CardinalNumber Noun ? ProperNoune

😇

CMPUT 651 (Fall 2019)

Motivation
• One data sample may have different labels, e.g.,

- POS tagging

- Parsing

- Sentence generation

- etc.

CMPUT 651 (Fall 2019)

Markov Model
• Finite states �

• You start from a state following the distribution
�

• Transition only depends on the current state
�

• Examples

- Weather

- N-gram model

S = {s1, s2, ⋯, sn}

π = [π1, π2, ⋯, πn]

ℙ[S(t) = si |S(t−1) = sj]

CMPUT 651 (Fall 2019)

Bayesian Network in General
• Directed Acyclic Graph �

- Each node is a random variable

- Each edge � represents that � is a direct “cause” of �

- The joint probability can be represented as

�

G = ⟨V, E⟩

a → b a b

p(x1, ⋯, xn) =
n

∏
i=1

p(xi |Par(xi))
All parents

Wrong. Factorization only happens
to the LHS of the conditional bar.

CMPUT 651 (Fall 2019)

Can we reverse cause & effect?

Wet

Rain

Wet

Rain
p(R, W) = p(R)p(W |R)

p(R, W) = p(W)p(W |R)

CMPUT 651 (Fall 2019)

Can we reverse cause & effect?

!X

!Y !Z !Y !Z

!X

CMPUT 651 (Fall 2019)

Can we reverse cause & effect?

!X

!Y !Z !Y !Z

Y ⊥ Z |X

Y ⊥ Z |X
does not hold in general

Written assignment: Prove.
Hint: By definition.

By the property of BNs,
� . � markY ⊥ Z |X ⟹ 0

!X

CMPUT 651 (Fall 2019)

Can we reverse cause & effect?

!X

!Y !Z

!X

!Y !Z

!X

!Y !Z
OR

Cause and effect cannot be formally defined.

But with our intuition of cause and effect, we
can simplify our model.

Cause and effect cannot be formally defined.
- In BN, “� ” refers to conditional probability

- In logics, “ � ” refers to entailment

→
→

CMPUT 651 (Fall 2019)

Markov Model

!S1 !S2 !S3

!S1 !S2

!x1 !x2

!S3

!x3

Hidden Markov Model

CMPUT 651 (Fall 2019)

Hidden Markov Model

p(s1, ⋯, sT, x1, ⋯xT) = p(s1)
T

∏
t=2

p(st |st−1)
T

∏
t=1

p(xt |st)

!S1 !S2

!x1 !x2

!S3

!x3

Initial
State
Prob.

Transition
Prob.

Emission
Prob.

n n2 v ⋅ n

CMPUT 651 (Fall 2019)

Example of HMM

!S1 !S2

!x1 !x2

!S3

!x3

Wet Wet Dry

CMPUT 651 (Fall 2019)

Maximum Likelihood Estimation

p(s1, ⋯, sT, x1, ⋯xT) = p(s1)
T

∏
t=2

p(st |st−1

T

∏
t=1

p(xt |st)

• Training if fully observable

- E.g., annotated by experts
!S1 !S2

!x1 !x2

!S3

!x3

log p(⋅) = log p(s1) +
T

∑
t=2

log p(st |st−1) +
T

∑
t=1

log p(xt |st)

Parameters factorize

CMPUT 651 (Fall 2019)

MLE for Multinomial Distribution
• Counting

- With one constraint �

- You need to explicitly represent �

- Or, you apply the Lagrangian multiplier method

π1 + ⋯πn = 1

πn = 1 − π1 − ⋯ − πn−1

log p(⋅) = log p(s1) +
T

∑
t=2

log p(st |st−1) +
T

∑
t=1

log p(xt |st)

πi =
∑M

i=1 𝕀{S1 = i}

M
=

of all samples

of samples that start with stae �i

CMPUT 651 (Fall 2019)

MLE for Multinomial Distribution
• Counting

- With one constraint �

- You need to explicitly represent �

- Or, you apply the Lagrangian multiplier method

π1 + ⋯πn = 1

πn = 1 − π1 − ⋯ − πn−1

log p(⋅) = log p(s1) +
T

∑
t=2

log p(st |st−1) +
T

∑
t=1

log p(xt |st)

Written assignment

CMPUT 651 (Fall 2019)

Inference

!S1 !S2

!x1 !x2

!S3

!x3

Wet Wet Dry

• Suppose the model is full trained

• During prediction, we observe �

- How can we know the states � that best explain
� ?

x1, ⋯, xT

s1, ⋯, sT
x1, ⋯, xT

CMPUT 651 (Fall 2019)

Inference Criteria
• We would like to predict the best (most probable) states

• Max a posteriori inference

Wet Wet Dry

!S1 !S2

!x1 !x2

!S3

!x3

s1, ⋯, sT = argmax
s1,⋯,sT

p(s1, ⋯, sT |x1, ⋯, xT)

= argmax
s1,⋯,sT

p(s1, ⋯, sT, x1, ⋯, xT)

x1:t, xt
1

Simplified notation may be used:

CMPUT 651 (Fall 2019)

Recall Beam Search

EOS

B=2

CMPUT 651 (Fall 2019)

Search in HMM
Some sub-structures are shared in different paths

!S1 !S2

!x1 !x2

!S3

!x3

CMPUT 651 (Fall 2019)

Markov Blanket

!Si

!xi

p(s1:T, x1:T) =
n

∏
i=1

[p(si |si−1)p(xi |si)] ℙ[s1]
Δ= p(s1 |s0)

For simplicity, the first state’s
probability is denoted as

Si−1

xi−1

Si+1

xi+1

Key observation:

Factorized probability is local.

• � only depends on �

• but not � , �
si:T, xi:T si−1

s≤i−2 x≤i−1

CMPUT 651 (Fall 2019)

Recursion Variable

p(s1:T, x1:T) =
n

∏
i=1

[p(si |si−1)p(xi |si)]

• Attempt#1: �

- But best choice for every step � best choice globally

• Attempt#2: � , for � being any state

maxs1:t
p(x1, ⋯, xi, st)

≠

maxs1:t−1
p(x1, ⋯, xt, st) st

s1, ⋯, sT = argmax
s1,⋯,sT

p(s1, ⋯, sT, x1, ⋯, xT)

M[t][j] Δ= maxs1:t−1
p(x1:t, St = j)

CMPUT 651 (Fall 2019)

Dynamic Programming

Initialization

M[t][j] Δ= max1:t−1 p(x1:t, St = j)

M[1][j] = max∅ p(x1, S1 = j)
= p(x1, S1 = j)
= p(S1 = j)p(x1 |S1 = j)
= πj ⋅ p(x1 |s1 = j)

[nothing to choose for “max”]

[both are model parameters]

CMPUT 651 (Fall 2019)

Dynamic Programming

Recursion Step

• Assume � known

• Goal: Figure out �

M[t − 1][j] = maxs1:t−2
p(x1:t−1, St−1 = j)

M[t][j]

M[t][j] Δ= max1:t−1 p(x1:t, St = j)

M[t][j] = maxs1:t−1
p(x1, ⋯, xt, St = j)

= maxs1:t−1
p(x1, ⋯, xt−1, st−1)p(st = j |st−1)p(xt |sj)

= max
st

max
s1:t−2

p(x1, ⋯, xt−1, st−1)p(st = j |st−1)p(xt |sj)

(∀j)

Known by recursion assumption �M[t − 1][st]

CMPUT 651 (Fall 2019)

Dynamic Programming

M[t][j] = maxs1:t−1
p(x1, ⋯, xt, St = j)

= maxs1:t−1
p(x1, ⋯, xt−1, st−1)p(St = j |st−1)p(xt |St = j)

= max
st

max
s1:t−2

p(x1, ⋯, xt−1, st−1)p(St = j |st−1)p(xt |St = j)

Known by recursion assumption �M[t − 1][st]

Recursion Step
• Assume � known

• Goal: Figure out �
M[t − 1][j] = maxs1:t−2

p(x1:t−1, St−1 = j)
M[t][j] (∀j)

M[t][j] Δ= max1:t−1 p(x1:t, St = j)

CMPUT 651 (Fall 2019)

Illustration
Recursion Step
• Assume � known

• Goal: Figure out �
M[t − 1][j] = maxs1:t−2

p(x1:t−1, St−1 = j)
M[t][j] (∀j)

M[t][j] Δ= max1:t−1 p(x1:t, St = j)

1

2

3

1

2

3

1

2

3

1

2

3

s1 s2 st−1 st

1

2

3

sT

⋯⋯

x1 x2 xt−1 xt xT

�M[t − 1][3]

Given by
recursion
assumpt.

� max� {� � }M[t][j] = st−1
→ → → ↗ ↓

CMPUT 651 (Fall 2019)

Termination: � is done �M[T][j] (∀j)

1

2

3

1

2

3

1

2

3

s1 s2 st−1 st sT

⋯⋯

x1 x2 xt−1 xt xT

Dynamic Programming

1

2

3

1

2

3

✔✔✔✔✔

CMPUT 651 (Fall 2019)

Backtracking the States

(∀j)

M[t][j] Δ= max1:t−1 p(x1:t, St = j)

1

2

3

1

2

3

1

2

3

1

2

3

s1 s2 st−1 st

1

2

3

sT

⋯⋯

x1 x2 xt−1 xt xT

�M[t − 1][3]

Given by
recursion
assumpt.

� max� {� � }M[t][j] = st−1
→ → → ↗ ↓

B[t][j] = argmaxi{M[t − 1][i] ⋅ P(St = j |St−1 = i) ⋅ P(xt |Sj)}

CMPUT 651 (Fall 2019)

Written Assignment
• Suppose an HMM is given

- States �

- Parameters � , � � known

• Goal

- To find the state and output sequences of length � that
have the highest jointly probability

- Think of the problem � [optional]

S = {1,⋯, n}

πj P(St−1 = j |St = i), P(xt |St = j)

T

x1:T = argmaxx1:T
p(x1:T)

s1:T, x1:T = argmax
s1:T,x1:T

p(s1:T, x1:T)

CMPUT 651 (Fall 2019)

Written Assignment
• Requirements

- Design a DP algorithm, stating the initialization, recursion,
and termination of the algorithm

 (don’t forget backpointers)

- For any recursion variable, a clear definition is needed

- The recursion step should be supported by derivation

- Give pseudo code that generates �

s1:T, x1:T

CMPUT 651 (Fall 2019)

Written Assignments
• Every week, we solve problems that have been mentioned in

Monday's and Wednesday’s lectures.

• Every assignment is due on next Monday

• Automatically extended to next Wednesday [before class]

• Further extensions require good reasons (self-approved
extension may result in 0 mark).

CMPUT 651 (Fall 2019)

Problem 1
Show that � does not hold in general for BN (1), but
� must be true for BN (2).

Note: If your solution involves showing some example, please
provide your own example.

Y ⊥ Z |X
Y ⊥ Z |X

!X

!Y !Z

(1) (2)

!X

!Y !Z

CMPUT 651 (Fall 2019)

Problem 2
Give the MLE estimation for HMM transition and emission
probabilities

• Figure out what are the parameters

• Give the formula to estimate these parameters (either by
indicator functions or natural language expressions)

It’s strongly recommended to derive MLE for multinomial
distributions, but is optional for this assignment.

log p(⋅) = log p(s1) +
T

∑
t=2

log p(st |st−1) +
T

∑
t=1

log p(xt |st)

πi =
∑M

i=1 𝕀{S1 = i}

M
=

of all samples

of samples that start with state �i

CMPUT 651 (Fall 2019)

Problem 3
• Suppose an HMM is given

- States �

- Parameters � , � � known

• Goal

- To find the state and output sequences of length � that
have the highest jointly probability

- Think of the problem � [optional]

S = {1,⋯, n}

πj P(St−1 = j |St = i), P(xt |St = j)

T

x1:T = argmaxx1:T
p(x1:T)

s1:T, x1:T = argmax
s1:T,x1:T

p(s1:T, x1:T)

CMPUT 651 (Fall 2019)

Problem 3
• Requirements

- Design a DP algorithm, stating the initialization, recursion,
and termination of the algorithm

 (don’t forget back pointers)

- For any recursion variable, a clear definition is needed

- The recursion step should be supported by derivation

- Give pseudo code that generates �

s1:T, x1:T

Thank you!
Q&A

CMPUT 651 (Fall 2019)

