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• Classification is non-linear

- May not even represented as fixed-dimensional features


• Do not consider the relationship of labels within one data 
sample


Drawbacks of LR/Softmax

The     lecture is         really          boring

https://www.merriam-webster.com/dictionary/lecture

  determiner   ?    verb  adverb  adjective

Three   professors   lecture   IntroNLP
  CardinalNumber  Noun    ?    ProperNoune

😇
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Motivation
• One data sample may have different labels, e.g.,


- POS tagging


- Parsing


- Sentence generation


- etc.
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Markov Model
• Finite states � 


• You start from a state following the distribution 
� 


• Transition only depends on the current state 
� 


• Examples


- Weather


- N-gram model

S = {s1, s2, ⋯, sn}

π = [π1, π2, ⋯, πn]

ℙ[S(t) = si |S(t−1) = sj]
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Bayesian Network in General
• Directed Acyclic Graph � 


- Each node is a random variable


- Each edge �  represents that �  is a direct “cause” of � 


- The joint probability can be represented as 

� 


G = ⟨V, E⟩

a → b a b

p(x1, ⋯, xn) =
n

∏
i=1

p(xi |Par(xi))
All parents

Wrong. Factorization only happens 
to the LHS of the conditional bar.
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Can we reverse cause & effect?

Wet

Rain

Wet

Rain
p(R, W) = p(R)p(W |R)

p(R, W) = p(W)p(W |R)
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Can we reverse cause & effect?

!X

!Y !Z !Y !Z

!X
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Can we reverse cause & effect?

!X

!Y !Z !Y !Z

Y ⊥ Z |X

Y ⊥ Z |X
does not hold in general

Written assignment: Prove. 
Hint: By definition.


By the property of BNs, 
� . �  markY ⊥ Z |X ⟹ 0

!X



CMPUT 651 (Fall 2019)

Can we reverse cause & effect?

!X

!Y !Z

!X

!Y !Z

!X

!Y !Z
OR

Cause and effect cannot be formally defined.

But with our intuition of cause and effect, we 
can simplify our model. 

Cause and effect cannot be formally defined. 
- In BN, “� ” refers to conditional probability 

- In logics, “ � ” refers to entailment

→
→
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Markov Model

!S1 !S2 !S3

!S1 !S2

!x1 !x2

!S3

!x3

Hidden Markov Model
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Hidden Markov Model

p(s1, ⋯, sT, x1, ⋯xT) = p(s1)
T

∏
t=2

p(st |st−1)
T

∏
t=1

p(xt |st)

!S1 !S2

!x1 !x2

!S3

!x3

Initial 
State  
Prob.

Transition  
Prob.

Emission  
Prob.

n n2 v ⋅ n
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Example of HMM

!S1 !S2

!x1 !x2

!S3

!x3

Wet Wet Dry
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Maximum Likelihood Estimation

p(s1, ⋯, sT, x1, ⋯xT) = p(s1)
T

∏
t=2

p(st |st−1

T

∏
t=1

p(xt |st)

• Training if fully observable


- E.g., annotated by experts
!S1 !S2

!x1 !x2

!S3

!x3

log p( ⋅ ) = log p(s1) +
T

∑
t=2

log p(st |st−1) +
T

∑
t=1

log p(xt |st)

Parameters factorize
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MLE for Multinomial Distribution
• Counting


- With one constraint � 


- You need to explicitly represent � 


- Or, you apply the Lagrangian multiplier method


π1 + ⋯πn = 1

πn = 1 − π1 − ⋯ − πn−1

log p( ⋅ ) = log p(s1) +
T

∑
t=2

log p(st |st−1) +
T

∑
t=1

log p(xt |st)

πi =
∑M

i=1 𝕀{S1 = i}

M
=

# of all samples

# of samples that start with stae �i
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MLE for Multinomial Distribution
• Counting


- With one constraint � 


- You need to explicitly represent � 


- Or, you apply the Lagrangian multiplier method


π1 + ⋯πn = 1

πn = 1 − π1 − ⋯ − πn−1

log p( ⋅ ) = log p(s1) +
T

∑
t=2

log p(st |st−1) +
T

∑
t=1

log p(xt |st)

Written assignment
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Inference

!S1 !S2

!x1 !x2

!S3

!x3

Wet Wet Dry

• Suppose the model is full trained


• During prediction, we observe � 


- How can we know the states �  that best explain 
� ?


x1, ⋯, xT

s1, ⋯, sT
x1, ⋯, xT
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Inference Criteria
• We would like to predict the best (most probable) states


• Max a posteriori inference

Wet Wet Dry

!S1 !S2

!x1 !x2

!S3

!x3

s1, ⋯, sT = argmax
s1,⋯,sT

p(s1, ⋯, sT |x1, ⋯, xT)

= argmax
s1,⋯,sT

p(s1, ⋯, sT, x1, ⋯, xT)

x1:t, xt
1

Simplified notation may be used:
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Recall Beam Search

EOS

B=2
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Search in HMM
Some sub-structures are shared in different paths

!S1 !S2

!x1 !x2

!S3

!x3
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Markov Blanket

!Si

!xi

p(s1:T, x1:T) =
n

∏
i=1

[p(si |si−1)p(xi |si)] ℙ[s1]
Δ= p(s1 |s0)

For simplicity, the first state’s 
probability is denoted as

Si−1

xi−1

Si+1

xi+1

Key observation: 


Factorized probability is local.

• �  only depends on � 


• but not � , �
si:T, xi:T si−1

s≤i−2 x≤i−1
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Recursion Variable

p(s1:T, x1:T) =
n

∏
i=1

[p(si |si−1)p(xi |si)]

• Attempt#1:   �  


- But best choice for every step �   best choice globally


• Attempt#2:   � , for �  being any state


maxs1:t
p(x1, ⋯, xi, st)

≠

maxs1:t−1
p(x1, ⋯, xt, st) st

s1, ⋯, sT = argmax
s1,⋯,sT

p(s1, ⋯, sT, x1, ⋯, xT)

M[t][ j] Δ= maxs1:t−1
p(x1:t, St = j)
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Dynamic Programming

Initialization

M[t][ j] Δ= max1:t−1 p(x1:t, St = j)

M[1][ j] = max∅ p(x1, S1 = j)
= p(x1, S1 = j)
= p(S1 = j)p(x1 |S1 = j)
= πj ⋅ p(x1 |s1 = j)

[nothing to choose for “max”]

[both are model parameters]
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Dynamic Programming

Recursion Step 

• Assume �  known


•  Goal: Figure out �

M[t − 1][ j] = maxs1:t−2
p(x1:t−1, St−1 = j)

M[t][ j]

M[t][ j] Δ= max1:t−1 p(x1:t, St = j)

M[t][ j] = maxs1:t−1
p(x1, ⋯, xt, St = j)

= maxs1:t−1
p(x1, ⋯, xt−1, st−1)p(st = j |st−1)p(xt |sj)

= max
st

max
s1:t−2

p(x1, ⋯, xt−1, st−1)p(st = j |st−1)p(xt |sj)

(∀j)

Known by recursion assumption �M[t − 1][st]
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Dynamic Programming

M[t][ j] = maxs1:t−1
p(x1, ⋯, xt, St = j)

= maxs1:t−1
p(x1, ⋯, xt−1, st−1)p(St = j |st−1)p(xt |St = j)

= max
st

max
s1:t−2

p(x1, ⋯, xt−1, st−1)p(St = j |st−1)p(xt |St = j)

Known by recursion assumption �M[t − 1][st]

Recursion Step 
• Assume �  known


•  Goal: Figure out �
M[t − 1][ j] = maxs1:t−2

p(x1:t−1, St−1 = j)
M[t][ j] (∀j)

M[t][ j] Δ= max1:t−1 p(x1:t, St = j)
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Illustration
Recursion Step 
• Assume �  known


•  Goal: Figure out �
M[t − 1][ j] = maxs1:t−2

p(x1:t−1, St−1 = j)
M[t][ j] (∀j)

M[t][ j] Δ= max1:t−1 p(x1:t, St = j)

1

2

3

1

2

3

1

2

3

1

2

3

s1 s2 st−1 st

1

2

3

sT

⋯⋯

x1 x2 xt−1 xt xT

�M[t − 1][3]

Given by 
recursion 
assumpt.

� max�  {� � }M[t][ j] = st−1
→ → → ↗ ↓
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Termination: �  is done �M[T][ j] (∀j)

1

2

3

1

2

3

1

2

3

s1 s2 st−1 st sT

⋯⋯

x1 x2 xt−1 xt xT

Dynamic Programming

1

2

3

1

2

3

✔✔✔✔✔



CMPUT 651 (Fall 2019)

Backtracking the States

(∀j)

M[t][ j] Δ= max1:t−1 p(x1:t, St = j)

1

2

3

1

2

3

1

2

3

1

2

3

s1 s2 st−1 st

1

2

3

sT

⋯⋯

x1 x2 xt−1 xt xT

�M[t − 1][3]

Given by 
recursion 
assumpt.

� max�  {� � }M[t][ j] = st−1
→ → → ↗ ↓

B[t][ j] = argmaxi{M[t − 1][i] ⋅ P(St = j |St−1 = i) ⋅ P(xt |Sj)}
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Written Assignment
• Suppose an HMM is given


- States � 


- Parameters � , � �  known


• Goal


- To find the state and output sequences of length �  that 
have the highest jointly probability


- Think of the problem �  [optional]

S = {1,⋯, n}

πj P(St−1 = j |St = i), P(xt |St = j)

T

x1:T = argmaxx1:T
p(x1:T)

s1:T, x1:T = argmax
s1:T,x1:T

p(s1:T, x1:T)
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Written Assignment
• Requirements


- Design a DP algorithm, stating the initialization, recursion, 
and termination of the algorithm


 (don’t forget backpointers)


- For any recursion variable, a clear definition is needed


- The recursion step should be supported by derivation


- Give pseudo code that generates � 


 
s1:T, x1:T
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Written Assignments
• Every week, we solve problems that have been mentioned in 

Monday's and Wednesday’s lectures.


• Every assignment is due on next Monday


• Automatically extended to next Wednesday [before class]


• Further extensions require good reasons (self-approved 
extension may result in 0 mark).
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Problem 1
Show that �  does not hold in general for BN (1), but 
�  must be true for BN (2).


Note: If your solution involves showing some example, please 
provide your own example.

Y ⊥ Z |X
Y ⊥ Z |X

!X

!Y !Z

(1) (2)

!X

!Y !Z
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Problem 2
Give the MLE estimation for HMM transition and emission 
probabilities


• Figure out what are the parameters


• Give the formula to estimate these parameters (either by 
indicator functions or natural language expressions)


It’s strongly recommended to derive MLE for multinomial 
distributions, but is optional for this assignment. 

log p( ⋅ ) = log p(s1) +
T

∑
t=2

log p(st |st−1) +
T

∑
t=1

log p(xt |st)

πi =
∑M

i=1 𝕀{S1 = i}

M
=

# of all samples

# of samples that start with state �i
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Problem 3
• Suppose an HMM is given


- States � 


- Parameters � , � �  known


• Goal


- To find the state and output sequences of length �  that 
have the highest jointly probability


- Think of the problem �  [optional]

S = {1,⋯, n}

πj P(St−1 = j |St = i), P(xt |St = j)

T

x1:T = argmaxx1:T
p(x1:T)

s1:T, x1:T = argmax
s1:T,x1:T

p(s1:T, x1:T)
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Problem 3
• Requirements


- Design a DP algorithm, stating the initialization, recursion, 
and termination of the algorithm


 (don’t forget back pointers)


- For any recursion variable, a clear definition is needed


- The recursion step should be supported by derivation


- Give pseudo code that generates � 


 
s1:T, x1:T



Thank you!
Q&A
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