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Pros & Cons of HMM
Pros 

• Model the relationship among different time 
steps


• Implicit clustering


- Not based on the similarity of observations 
themselves (cf. GMM)


- But based on similarity of observations in 
state transition


• Support unsupervised training. E.g.,


- States={rainy, snowy, sunny}


- Observations={wet, icy, dry}
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Pros & Cons of HMM
Cons 

• The discriminative classification is over-
simplified (can be addressed by reverse  
to  and incorporate more features)


• Label bias problem

s → x
x → s
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Source: http://www.cs.cmu.edu/~epxing/
Class/10708/lectures/lecture12-CRF.pdf
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Undirected Graph
• Idea: Each local factor yields a scoring 

function, instead of a probability


• Normalizing the probability afterwards
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Source: http://www.cs.cmu.edu/~epxing/
Class/10708/lectures/lecture12-CRF.pdf
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Markov Random Field
• Let  be the nodes 


• The scope of a factor  is a subset of :


 , where 


• A factor maps the values of a scope to a non-negative/
positive number


 

V = {X1, X2, ⋯, XN}

ϕi V

{Xi,1, ⋯, Xi,ni
} Xi,j ∈ V

ϕi : Xi,1, Xi,2, ⋯, Xi,ni
→ ℝ+

Suppose we have  factors in total


Def (unnormalized measure):  


Def (partition function):    


Def (Probability): 

K

p̃(x1, ⋯, xn) =
K

∏
k=1

ϕk(xk,1, ⋯, xk,nk
)

Z = ∑
x1,⋯,xn

p(x1, ⋯, xn)

p(x1, ⋯, xn) =
1
Z

p̃(x1, ⋯, xn)

(Also model parameters)
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Markov Network
• Let  be the nodes 


• The scope of a factor  is a subset of :


 , where 


• A factor maps the values of a scope to a non-negative/positive number


 


• A Markov network (induced by the MRF) is an undirected graph 
, where


 

V = {X1, X2, ⋯, XN}

ϕi V

{Xi,1, ⋯, Xi,ni
} Xi,j ∈ V

ϕi : Xi,1, Xi,2, ⋯, Xi,ni
→ ℝ+

G = ⟨V, E⟩

E = {(i, j) : ∃k, {xi, xj} ⊆ scope(ϕk)
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Markov Random Field
Interpretation of the factors


• Local happiness for a certain assignment


• Not probability: 


• Not marginal probability: 


• Posterior is local [HW1]


 


 Hint: , where  is a multiplication of many factors, 

which in turn can be grouped into two categories: those including  and those not 
including . The latter is canceled out in both the numerator and the denominator.

p(x1, x2) ≠
ϕ(x1, x2)

∑x1,x2
ϕ(x1, x2)

p(x1, x2) ∝/∑
x2

ϕ(x1, x2)

p(xi |x−i) ∝ ∏
k:xi∈scope(ϕk)

ϕk

p(xi |x−i) =
p(xi, x−i)

∑x′�i
p(x′�i, x−i)

p( ⋅ )

Xi
Xi
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Application of MRF
• No explicit “cause and effect”


- Entangled photons 


- Image pixels


- Even in a sentence, a preceding word may not be a cause


- Social network: everyone is influencing everyone else simultaneously


- HW2: Give your own example. What else is more suitable to be 
modeled as an MRF than a BN? And why?
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Log-Linear Model
• Another parametrization of the MRF


p(x1, ⋯, xn) ∝
n

∏
i=1

ϕ(xi,1, ⋯, xi,ni
)

= exp{
n

∑
i=1

log ϕi(xi,1, ⋯, xi,ni
)}

= exp{
n

∑
i=1

∑
x′ �i,1,⋯,x′�i,ni

log ϕi(x′�i,1, ⋯, x′�i,ni
)𝕀{xni

, ⋯xni
= x′�ni

, ⋯, x′�ni
})}

θ f
Parameters Features

p(x1, ⋯, xn) =
1
Z

exp{∑
i

θi fi(x)}

The same as MN (suppose potentials >0)
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Learning
• Unlike BN, MRF’s weights can never be manually assigned


- Humans are especially bad at expressing our vague intuition


• MRF’s weights have to be learned in some principled way


Maximum likelihood estimation (MLE): 1
N ∑

j

log p(x( j)) =
1
N ∑

j

log
1
Z

exp{∑
i

θi fi(x( j))}
∂

∂θi

1
N ∑

j

log
1
Z

exp{∑
i

θi fi(x( j))}

=
∂

∂θi

1
N ∑

j

log exp{∑
i′�

θi′ � fi(x( j))} −
∂

∂θi

1
N ∑

j

log∑
x′ �

exp{∑
i′�

θi′ � fi′�(x′�)}

=
1
N ∑

j

fi −
1

∑x′ �′ �exp{∑i θi fi(x′�′�)} ∑
x′�

exp{∑i
θi fi(x′ �)}fi(x′ �)

=
1
N ∑

j

fi − ∑
x′�

exp{∑i θi fi(x′�)}
∑x′ �′ �exp{∑i θi fi(x′�′�)}

fi(x′�)

= 𝔼x∼𝒟[ fi] − 𝔼x∼pθ(x)[ fi(x)]
Expectation in data — Expectation in model
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Conditional Random Fields
• Suppose the variables of a data sample can be separated into two parts:


- The variables  are always given


-  The variables  are of particular interest


x

y

Suppose we have  factors in total. For a data sample


Def (unnormalized measure):  


Def (partition function):    


Def (Probability): 

K

p̃(x, y) =
K

∏
k=1

ϕk(x, y)

Zx = ∑
y

p(x, y)

p(y |x) =
1
Zx

p̃(x, y)

HW: Proof that a CRF defined as such is 
equivalent to the conditional probability as 
defined in MRF.
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Conditional Random Fields
• Suppose the variables of a data sample can be separated into two parts:


- The variables  are always given


-  The variables  are of particular interest


- MLE: maximizing 

x

y

p(y |x)

∂
∂θi

log p(x(i))

= 𝔼x∼𝒟[ fi] − 𝔼x∼pθ(x)[ fi(x)]

Expectation in data — Expectation in model  
(in CRF, given evidence of a particular data point)

MRF: CRF:

∂
∂θi

log p(x(i))

= 𝔼x∼𝒟[ fi] − 𝔼x∼pθ(x)[ fi(x)]y(i) y y y

x(i)Given each data sample

y

y ∼ pθ(y |x)This sample
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Inference
• In general: Hard


• Chain MRF/CRF: DP as for HMM



• PGM course


 https://www.youtube.com/watch?
v=q8vNcVmarcI&feature=youtu.be


• Chap 9, Bishop, Pattern Recognition and Machine Learning.


• Rabiner, L.R., 1989. A tutorial on hidden Markov models and 
selected applications in speech recognition. Proceedings of the 
IEEE, 77(2), pp.257-286.


• Lafferty J, McCallum A, Pereira FC. Conditional random fields: 
Probabilistic models for segmenting and labeling sequence 
data.

Suggested Reading
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https://www.youtube.com/watch?v=q8vNcVmarcI&feature=youtu.be
https://www.youtube.com/watch?v=q8vNcVmarcI&feature=youtu.be


Thank you!
Q&A

CMPUT 651 (Fall 2019)


