Sentence Generation

Lili Mou
lmou@ualberta.ca
lili-mou.github.io
Roapmap

• Motivation and examples

• Techniques
 - Generation from latent space
 - Generation from word space
Motivation

• Sentence generation
 - Dialogue systems
 - Paraphrase generation
 - Machine translation

• A seq2seq model may not suffice
 - No input
 - Constructing new information
 - Diversity needed

• Probabilistic sentence generation
 - Prior sampling, posterior sampling
Latent Space Sampling
Variational Autoencoder

- Humans’ sentence generation involves two steps
 - First, we have some “vague” idea of the sentence
 - Then, we flesh it out by words

- A sentence $x = (x_1, \cdots, x_T)$ is subject to some latent representation z

$$p(z, x) = p(z)p(x | z)$$

Variational Autoencoder

- Humans’ sentence generation involves two steps
 - First, we have some “vague” idea of the sentence
 - Then, we flesh it out by words

- A sentence $x = (x_1, \cdots, x_T)$ is subject to some latent representation z

\[
p(z, x) = p(z)p(x | z)
\]

How can we learn a model with latent variables?

E-step: $p(z | x) = \frac{p(z)p(x | z)}{p(x)} = \frac{p(z)p(x | z)}{\int p(z')p(x | z')dz'}$

M-step: maximize $\mathbb{E}_{z \sim p(z | x)} \log p(z, x)$
Variational Autoencoder

- Humans’ sentence generation involves two steps
 - First, we have some “vague” idea of the sentence
 - Then, we flesh it out by words

- A sentence $x = (x_1, \cdots, x_T)$ is subject to some latent representation z

\[p(z, x) = p(z)p(x | z) \]

How can we learn a model with latent variables?

E-step: $p(z | x) = \frac{p(z)p(x | z)}{p(x)} = \frac{p(z)p(x | z)}{\int p(z')p(x | z')dz'}$

M-step: maximize $\mathbb{E}_{z \sim p(z|x)} \log p(z, x)$
Variational Autoencoder

- Humans’ sentence generation involves two steps
 - First, we have some “vague” idea of the sentence
 - Then, we flesh it out by words

- A sentence $x = (x_1, \ldots, x_T)$ is subject to some latent representation z

$$p(z, x) = p(z)p(x | z)$$

How can we learn a model with latent variables?

Recognition

- **E-step:** $p(z | x) = \frac{p(z)p(x | z)}{p(x)} = \frac{p(z)p(x | z)}{\int p(z')p(x | z')dz'}$

Reconstruction

- **M-step:** maximize $\mathbb{E}_{z \sim p(z|x)} \log p(z, x)$

(in a more general sense)
Variational Inference

\[
\log p(x; \theta) = \log \left(\int_z p(x, z; \theta) dz \right)
\]

\[
= \int q(z | x) \log \frac{p(y, z; \theta)}{q(z | x)} dz + \int q(z | x) \log \frac{q(z | x)}{p(z | x; \theta)} dz
\]

\[
L(q, \theta)\quad \text{KL}(q(Z | x) \| p(Z | x))
\]

Variational inference vs EM

<table>
<thead>
<tr>
<th>Variational family (q \in Q)</th>
<th>(q) can be any distribution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ignore the KL-term</td>
<td>True posterior is the best</td>
</tr>
<tr>
<td></td>
<td>KL=0 after E step</td>
</tr>
</tbody>
</table>

CMPUT 651 (Fall 2019)

Variational Inference
Variational Inference

\[
\log p(x; \theta) = \log \left(\int_z p(x, z; \theta) dz \right)
\]

\[
= \int q(z|x) \log \frac{p(y, z; \theta)}{q(z|x)} dz + \int q(z|x) \log \frac{q(z|x)}{p(z|x; \theta)} dz
\]

\[
L(q, \theta) \quad \text{KL}(q(Z|x) || p(Z|x))
\]

- Two extremes
 - Q = any function \(\Rightarrow\) EM
 \(\Rightarrow\) powerful model; optimization intractable
 - Q = \{a fixed distribution\}
 \(\Rightarrow\) degenerated model; optimization easy
Variational Inference

\[
\log p(x; \theta) = \log \left(\int p(x, z; \theta) dz \right)
\]

\[
= \int q(z | x) \log \frac{p(y, z; \theta)}{q(z | x)} dz + \int q(z | x) \log \frac{q(z | x)}{p(z | x; \theta)} dz
\]

\[
L(q, \theta) \quad \text{KL}(q(Z | x) \| p(Z | x))
\]

- Two extremes
 - \(Q = \text{any function} \Rightarrow \text{EM} \)
 \[
 \Rightarrow \text{powerful model; optimization intractable}
 \]
 - \(Q = \{\text{a fixed distribution}\} \)
 \[
 \Rightarrow \text{degenerated model; optimization easy}
 \]

Trade-off, e.g.,
- Independent assumption
- Gaussian assumption
Example

Variational family: factorized distribution

\[
p(\mathcal{D}|\mu, \tau) = \left(\frac{\tau}{2\pi}\right)^{N/2} \exp \left\{ -\frac{\tau}{2} \sum_{n=1}^{N} (x_n - \mu)^2 \right\}
\]

\[
p(\mu|\tau) = \mathcal{N}(\mu|\mu_0, (\lambda_0 \tau)^{-1})
\]

\[
p(\tau) = \text{Gam}(\tau|a_0, b_0)
\]

\[
q(\mu, \tau) = q_\mu(\mu)q_\tau(\tau)
\]

Figure 10.4 Illustration of variational inference for the mean \(\mu\) and precision \(\tau\) of a univariate Gaussian distribution. Contours of the true posterior distribution \(p(\mu, \tau|\mathcal{D})\) are shown in green. (a) Contours of the initial factorized approximation \(q_\mu(\mu)q_\tau(\tau)\) are shown in blue. (b) After re-estimating the factor \(q_\mu(\mu)\). (c) After re-estimating the factor \(q_\tau(\tau)\). (d) Contours of the optimal factorized approximation, to which the iterative scheme converges, are shown in red.
Variational Autoencoder

- Variational autoencoder
 - Variational family: $Q = \{ \mathcal{N}(\mu, \text{diag } \sigma^2) : \mu \in \mathbb{R}^d, \sigma \in \mathbb{R}^d_{++} \}$
 - Recognizing μ, σ by NN
 - Modeling x also by NN (need a little bit more efforts)
Variational Autoencoder

\[
\log p_\theta(x) = \log \left(\int_z p_\theta(x, z)dz \right)
\]

\[
= \int q_\phi(z \mid x) \log \frac{p_\theta(y, z)}{q_\phi(z \mid x)} dz + \int q_\phi(z \mid x) \log \frac{q_\phi(z \mid x)}{p_\theta(z \mid x)} dz
\]

\[
\geq \int q_\phi(z \mid x) \log \frac{p_\theta(y, z; \theta)}{q_\phi(z \mid x)} dz
\]

\[
= \int q_\phi(z \mid x) \log p_\theta(y \mid z) dz + \int q_\phi(z \mid x) \log \frac{p_\theta(z)}{q_\phi(z \mid x)} dz
\]

\[
= \mathbb{E}_{z \sim q_\phi(z \mid x)} \log p_\theta(y \mid z) - KL(q_\phi(z \mid x) \| p_\theta(z))
\]
Formula Zoo

\[
\begin{align*}
E_{x \sim p_{\text{data}}(x)} \left[\log p(x) \right] & \geq E_{x \sim p_{\text{decoder}}(x)} \left[E_{q(z|x)} \left[\log p(x|z) \right] \right] - \underbrace{E_{x \sim p_{\text{data}}(x)} \left[\text{KL} \left(q(z|x) \parallel p(z) \right) \right]}_{\text{VAE Reconstruction}} \\
& \quad - \underbrace{\text{VAE Regularization}}_{(1)} \\
& = E_{x \sim p_{\text{data}}(x)} \left[E_{q(z|x)} \left[\log p(x|z) \right] \right] - \overbrace{\text{KL} \left(q(z|x) \parallel p(z) \right) p_{\text{data}}(x)}_{\text{AVB Reconstruction}} \\
& \quad - \underbrace{\text{AVB Regularization}}_{(2)} \\
& = E_{x \sim p_{\text{data}}(x)} \left[E_{q(z|x)} \left[\log p(x|z) \right] \right] - \overbrace{\text{KL} \left(q(z) \parallel p(z) \right) - I(z; x)}_{\text{AAE Reconstruction}} \\
& \quad - \underbrace{\text{AAE Regularization}}_{\text{Natural Info.}}_{(3)} \\
& = - E_{z \sim q(z)} \left[\text{KL} \left(q(z|x) \parallel p(z) \right) \right] - \overbrace{\text{KL} \left(q(z) \parallel p(z) \right) - H_{\text{data}}(x)}_{\text{IAE Reconstruction}} \\
& \quad - \underbrace{\text{IAE Regularization}}_{\text{Entropy of data}}_{(4)} \\
& = - \overbrace{\text{KL} \left(q(z|x) \parallel r(z|x) \right) - \text{KL} \left(q(z) \parallel p(z) \right) - H_{\text{data}}(x)}_{\text{IAE Reconstruction}} \\
& \quad - \underbrace{\text{IAE Regularization}}_{\text{Entropy of data}}_{(5)} \\
& = - \overbrace{\text{KL} \left(q(z|x) \parallel p(z) \right) - H_{\text{data}}(x)}_{\text{ALL BiGAN Cost}} \\
& \quad - \underbrace{\text{Entropy of data}}_{(6)}
\end{align*}
\]
Adversarial/Wasserstein Autoencoder

- **VAE:**
 \[q(z \mid x) \rightarrow p(z) \]

- **WAE:**
 \[q(z) = \int p_{\mathcal{D}}(x)q(z \mid x)dx \xrightarrow{close} p(z) \]

\[
J = \mathbb{E}_{x \in p_{\mathcal{D}}(x)}\mathbb{E}_{z \in q(z \mid x)} \log p(z \mid x) + \mathbb{D}(q(z), p(z))
\]

Implicit Distributions

- We penalize some distance between \(q(z) \) and \(p(x) \)
- We do not have an explicit form or \(q(z) \)
- But samples from \(q(z) := \int p_\mathcal{D}(x)q(z \mid x)dx \)
 \[
 x^{(i)} \sim p_\mathcal{D}(x), \quad z \sim q(z \mid x^{(i)})
 \]
Adversarial Training

- We penalize some distance between $q(z)$ and $p(z)$
- We deliberately introduce a classifier (discriminator/adversary) to distinguish samples from $q(z)$ and $p(z)$
- We train the model to fool the discriminator
 - Flipping gradient
 - Maximizing predicted entropy
Algorithm

foreach mini-batch do

minimize $J_{\text{dis}}(\theta_{\text{dis}})$ w.r.t. θ_{dis}

minimize J_{ovr} w.r.t. θ_{E}, θ_{D}

end

- Modeling J_{ovr}
 - Flipping gradient
 \[J_{\text{ovr}} = J_{\text{rec}} - J_{\text{dis}} \]
 - Maximizing predicted entropy
 \[J_{\text{ovr}} = J_{\text{rec}} - \mathcal{H}(y_{\text{dis}}) \]

q or p?

\[\theta_{\text{dis}} \]

\[\mathcal{X} \rightarrow \theta_{E} \rightarrow Z \rightarrow \theta_{D} \rightarrow \mathcal{X} \]
Applications of Adv Training

• Adversarial/Wasserstein autoencoder
 \[q(z) \ vs \ p(z) \]

• Generative adversarial network
 \[p_{\text{gen}}(z) \ vs \ p_{\mathcal{D}}(z) \]

• Domain adaptation
 \[p_{D1}(z) \ vs \ p_{D2}(z) \]
A Few Fundamental Questions

- VAE: KL collapse

\[J = \mathbb{E}_{z \sim q(z|x)}[\log p(x | z)] + \text{KL}(q(z | x) \| p(z)) \]

- WAE alleviates this problem

A Few Fundamental Questions

• WAE: Stochasticity collapse

\[J = \mathbb{E}_{z \sim q(z|x)}[\log p(x \mid z)] + \mathcal{D}(q(z), p(z)) \]

• If
 - Gaussian encoder
 - Gradient comes from samples
 - Sampling var << Data var

• Then
 - \(\sigma^2 \to 0 \) by SGD

Applications of *AEs

- Regularization

Especially good for interpolation
Applications of *AEs

• Prior sampling

<table>
<thead>
<tr>
<th>Training Samples</th>
</tr>
</thead>
<tbody>
<tr>
<td>a mother and her child are outdoors.</td>
</tr>
<tr>
<td>the people are opening presents.</td>
</tr>
<tr>
<td>the girls are looking toward the water.</td>
</tr>
<tr>
<td>a small boy walks down a wooden path in the woods.</td>
</tr>
<tr>
<td>a person in a green jacket it surfing while holding on to a line.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DAE</th>
</tr>
</thead>
<tbody>
<tr>
<td>two families walking in a towel down alaska sands a cot.</td>
</tr>
<tr>
<td>a blade is rolling its nose furiously paper.</td>
</tr>
<tr>
<td>a woman in blue shirts is passing by a some beach</td>
</tr>
<tr>
<td>transporting his child are wearing overalls.</td>
</tr>
<tr>
<td>a guys are blowing on professional thinks the horse.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WAE-D ($\lambda_{\text{WAE}} = 10$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>the lone man is working.</td>
</tr>
<tr>
<td>the group of men is using ice at the sunset.</td>
</tr>
<tr>
<td>a family is outside in the background.</td>
</tr>
<tr>
<td>two women are standing on a busy street outside a fair</td>
</tr>
<tr>
<td>a tourists is having fun on a sunny day</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>WAE-S ($\lambda_{\text{WAE}} = 10, \lambda_{\text{KL}} = 0.01$)</th>
</tr>
</thead>
<tbody>
<tr>
<td>an asian man is dancing in a highland house.</td>
</tr>
<tr>
<td>a person wearing a purple snowsuit jumps over the tree.</td>
</tr>
<tr>
<td>the vocalist is at the music and dancing with a microphone.</td>
</tr>
<tr>
<td>a young man is dressed in a white shirt cleaning clothes.</td>
</tr>
<tr>
<td>three children lie together and a woman falls in a plane.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VAE without Annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>a man is playing a guitar.</td>
</tr>
<tr>
<td>a man is playing with a dog.</td>
</tr>
<tr>
<td>a man is playing with a dog.</td>
</tr>
<tr>
<td>a man is playing a guitar.</td>
</tr>
<tr>
<td>a man is playing with a dog.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>VAE with Annealing</th>
</tr>
</thead>
<tbody>
<tr>
<td>the band is sitting on the main street.</td>
</tr>
<tr>
<td>couple dance on stage in a crowded room.</td>
</tr>
<tr>
<td>two people run alone in an empty field.</td>
</tr>
<tr>
<td>the group of people have gathered in a picture.</td>
</tr>
<tr>
<td>a cruise ship is docking a boat ship.</td>
</tr>
</tbody>
</table>
Applications of *AEs

- Posterior sampling
- Paraphrase generation
- Style-transfer generation

<table>
<thead>
<tr>
<th>Semantic and Syntactic Providers</th>
<th>Syntax-Transfer Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ref\text{syn}: The child is playing in the garden.</td>
<td>VAE: There is a person in the garden.</td>
</tr>
<tr>
<td>Ref\text{sem}: There is a dog behind the door.</td>
<td>DSS-VAE: A dog is walking behind the door.</td>
</tr>
<tr>
<td>Ref\text{syn}: The stadium was packed with people.</td>
<td>DSS-VAE: The stadium was packed with people.</td>
</tr>
<tr>
<td>Ref\text{sem}: The shellfish was cooked in a wok.</td>
<td>VAE: The man was filled with people.</td>
</tr>
<tr>
<td>Ref\text{syn}: The airplane is in the sky.</td>
<td>DSS-VAE: There is a airplane in the sky.</td>
</tr>
<tr>
<td>Ref\text{sem}: There is an apple on the table.</td>
<td>VAE: The man is in the kitchen.</td>
</tr>
</tbody>
</table>
Word Space Sampling

RNN Generation

The book is interesting

<EOS>
RNN Generation

The book is interesting <EOS>

The book is interesting <SOS>

Question: Can we generate a sentence right-to-left?
Issues with Single Directional Generation

- Information bottleneck

- Error cumulation
 - Due to sampling or incompetency of the RNN
Generation by Local Changes

• Suppose we have a blueprint

The book is interesting <EOS>
Generation by Local Changes

• Suppose we have a blueprint

The book is interesting <EOS>

This
Generation by Local Changes

• Suppose we have a blueprint

The book is interesting <EOS>

This book is quite interesting <EOS>
Generation by Local Changes

- Suppose we have a blueprint

The book is interesting <EOS>

This book is quite fascinating <EOS>
Applications

• Paraphrase generation
 - “Sample” a sentence with similar semantics but different wordings

• Summarization
 - “Sample” a sentence with similar semantics

• Grammatical error correction
 - “Sample” a more likely sentence with the same semantics
Sampling Methods
Independent Sampling

• Sampling from CDF
 - Probabilistic density function (PDF)
 \[\Pr[a \leq x \leq b] = \int_a^b f(x) \, dx \]
 - Cumulative density function (CDF)
 \[F(x) = \int_{-\infty}^x f(u) \, du = \Pr[u \leq x] \]
 - Sampling procedure
 \[u \sim U[0,1]; \quad x = \text{CDF}^{-1}(u) \]

• Problems
 - CDF not analytic
 - Especially, the conditional CDF in multivariate cases
Independent Sampling

• Rejection sampling

 - To sample from \(p(x) = \frac{1}{Z} \tilde{p}(x) \)

 - We instead sample \(x \sim q(x) \)

 - Accept the sample \(x \) with probability
 \[
 \frac{\tilde{p}(x)}{k \cdot q(x)}
 \]
 where \(k \) is a constant s.t. \(kq(x) \geq \tilde{p}(x), \forall x \)

 - Reject \(x \) w.p. \(1 - \frac{\tilde{p}(x)}{k \cdot q(x)} \)

• Many other sampling methods
Dependent Sampling

- Goal: Sample from $p(x)$

- MCMC sampling
 - Start from an arbitrary initial sample $x^{(0)}$
 - Sample $x^{(1)} \sim p(x^{(1)} | x^{(0)})$, $x^{(2)} \sim p(x^{(2)} | x^{(1)})$, ...
 - Hope $p(x^{(n)}) \rightarrow p(x)$ as $n \rightarrow \infty$
Markov Chain

• States: \(S = \{s_1, s_2, \ldots \} \)

• Initial distribution \(\pi^{(0)} \)

• Transition probability: \(\mathcal{T}_{i \rightarrow j} = p(x^{(t+1)} = s_j \mid x^{(t)} = s_i) \)

 - \(x^{(t+1)} \) is independent of \(x^{(t-1)} \), given \(x^{(t)} \)

 - \(\mathcal{T}_{i \rightarrow j} \) works for all time steps \(t \)

• **Thm:** Starting from an arbitrary initial distribution, a Markov Chain converges to a **unique** stationary distribution (under mild assumptions).
Markov Chain Monte Carlo

- Goal: Sample from \(p(x) \)
- MCMC sampling
 - Start from an arbitrary initial sample \(x^{(0)} \)
 - Sample \(x^{(1)} \sim p(x^{(1)} | x^{(0)}), \quad x^{(2)} \sim p(x^{(2)} | x^{(1)}), \quad \ldots \)
 - Hope \(p(x^{(n)}) \rightarrow p(x) \) as \(n \rightarrow \infty \)
Markov Chain Monte Carlo

• Goal: Sample from $p(x)$

• MCMC sampling

 - Start from an arbitrary initial sample $x^{(0)}$

 - Sample $x^{(1)} \sim p(x^{(1)} | x^{(0)})$, $x^{(2)} \sim p(x^{(2)} | x^{(1)})$, ... by following a carefully designed Markov chain

 - Hope $p(x^{(n)}) \rightarrow p(x)$ as $n \rightarrow \infty$

 Guaranteed that
Metropolis—Hastings Sampler

- **Input**
 - An arbitrary desired distribution $p(x)$

- **Output**
 - An unbiased sample $x \sim p(x)$

- **Algorithm**
 - Start from an arbitrary initial state $x^{(0)}$
 - For every step t
 - Propose a new state $x' \sim g(x'|x^{(t)})$
 - Accept x' w.p. $A(x'|x) = \min \left\{ 1, \frac{p(x')g(x^{(t)}|x')}{p(x)g(x'|x^{(t)})} \right\}$, i.e., $x^{(t+1)} = x'$
 - Reject x' otherwise, i.e., $x^{(t+1)} = x^{(t)}$
 - Return $x^{(t)}$ with a large t
Proof Sketch

- Detailed balance property \Rightarrow Stationary distribution

 If

 $\forall x, y, \quad \pi(x) \cdot \mathcal{T}_{x \rightarrow y} = \pi(y) \cdot \mathcal{T}_{y \rightarrow x}$

 Then

 $\pi(x)$ is a stationary distribution

 Because

 $\forall x, \quad \pi(x) = \sum_{y} \pi(y) \mathcal{T}_{y \rightarrow x} = \sum_{y} \pi(x) \mathcal{T}_{x \rightarrow y} = \pi(x)$
Proof Sketch (Cont.)

- MH Sampler satisfies detailed balance

\[\forall x, y, \text{ if } x \neq y, \ p(x) \cdot \mathcal{T}_{x \rightarrow y} = p(x) \cdot g(y \mid x) \cdot \min \left\{ 1, \frac{p(y)g(x \mid y)}{p(x)g(y \mid x)} \right\} \] \hspace{1cm} (1)

\[p(y) \cdot \mathcal{T}_{y \rightarrow x} = p(y) \cdot g(x \mid y) \cdot \min \left\{ 1, \frac{p(x)g(y \mid x)}{p(y)g(x \mid y)} \right\} \] \hspace{1cm} (2)

- W.L.O.G., we assume \(p(x)g(y \mid x) \geq p(y)g(x \mid y) \)

\[(1) = p(y) \cdot g(x \mid y) \]

\[(2) = p(y) \cdot g(x \mid y) \]

- \(\forall x, y, \text{ if } x = y, \ p(x)\mathcal{T}_{x \rightarrow y} = p(y)\mathcal{T}_{y \rightarrow x} \) also holds
• Suppose \(\mathbf{x} = (x_1, x_2, \cdots, x_{i-1}, x_i, x_{i+1}, \cdots, x_n) \)

• If the proposal distribution is \(x'_i \sim p(x_i | \mathbf{x}_{-i}) \)

• Then, the acceptance rate is \(A(x'|x) = \min \left\{ 1, \frac{p(x')g(x | x')} {p(x)g(x' | x)} \right\} \)

 - Notice that \(\mathbf{x}' = (x_1, x_2, \cdots, x_{i-1}, x'_i, x_{i+1}, \cdots, x_n) \)

 - Thus, \(\frac{p(x')g(x | x')} {p(x)g(x' | x)} = \frac{p(x_{-i})p(x'_i | x_{-i}) \cdot p(x_i | x_{-i})} {p(x_{-i})p(x_i | x_{-i}) \cdot p(x'_i | x_{-i})} = 1 \)

\(\Rightarrow \) Gibbs step is a special case of an MH step, with AC rate = 1
Applying MH to Sentence Generation
MH Components

- State: Every sentence
- Target distribution: Depend on the task
- Proposal distribution
 - Task agnostic, or task specific
- Compute acceptance rate
 - We can’t do anything here
Target distribution

- General formula
 - \(p(x) \propto p_{LM}(x) \cdot s_1(x) \cdots s_n(x) \)
 - \(s_i(x) \): scoring functions specific to the task
Target distribution

- General formula
 - \(p(x) \propto p_{LM}(x) \cdot s_1(x) \cdots s_n(x) \)
 - \(s_i(x) \): scoring functions specific to the task

- Keywords-to-sentence generation
 \[
 s(x) = \begin{cases}
 1, & \text{if keywords in } x \\
 0, & \text{otherwise}
 \end{cases}
 \]

- Paraphrase generation/Grammatical error correction
 - \(s(x) = \text{sim}_{\text{semantic}}(x, x_0) + \text{diff}_{\text{word}}(x, x_0) \)
Proposal Distribution

• Replace

\[g_{\text{replace}}(x'|x) = \pi(w^*_m = w^c|x_{-m}) = \frac{\pi(w_1, \cdots, w_{m-1}, w^c, w_{m+1}, \cdots, w_n)}{\sum_{w \in \mathcal{V}} \pi(w_1, \cdots, w_{m-1}, w, w_{m+1}, \cdots, w_n)} \]

• Delete

• Insert

 - Also sample from posterior
Examples: Keywords-to-Sentence

<table>
<thead>
<tr>
<th>Keyword(s)</th>
<th>Generated Sentences</th>
</tr>
</thead>
<tbody>
<tr>
<td>friends</td>
<td>My good friends were in danger.</td>
</tr>
<tr>
<td>project</td>
<td>The first project of the scheme.</td>
</tr>
<tr>
<td>have, trip</td>
<td>But many people have never made the trip.</td>
</tr>
<tr>
<td>lottery, scholarships</td>
<td>But the lottery has provided scholarships.</td>
</tr>
<tr>
<td>decision, build, home</td>
<td>The decision is to build a new home.</td>
</tr>
<tr>
<td>attempt, copy, painting, denounced</td>
<td>The first attempt to copy the painting was denounced.</td>
</tr>
</tbody>
</table>
Examples: Paraphrase Generation

<table>
<thead>
<tr>
<th>Model</th>
<th>BLEU-ref</th>
<th>BLEU-ori</th>
<th>NLL</th>
</tr>
</thead>
<tbody>
<tr>
<td>Origin Sentence</td>
<td>30.49</td>
<td>100.00</td>
<td>7.73</td>
</tr>
<tr>
<td>VAE-SVG (100k)</td>
<td>22.50</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VAE-SVG-eq (100k)</td>
<td>22.90</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VAE-SVG (50k)</td>
<td>17.10</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>VAE-SVG-eq (50k)</td>
<td>17.40</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Seq2seq (100k)</td>
<td>22.79</td>
<td>33.83</td>
<td>6.37</td>
</tr>
<tr>
<td>Seq2seq (50k)</td>
<td>20.18</td>
<td>27.59</td>
<td>6.71</td>
</tr>
<tr>
<td>Seq2seq (20k)</td>
<td>16.77</td>
<td>22.44</td>
<td>6.67</td>
</tr>
<tr>
<td>VAE (unsupervised)</td>
<td>9.25</td>
<td>27.23</td>
<td>7.74</td>
</tr>
<tr>
<td>CGMH w/o matching</td>
<td>18.85</td>
<td>50.28</td>
<td>7.52</td>
</tr>
<tr>
<td>w/ KW</td>
<td>20.17</td>
<td>53.15</td>
<td>7.57</td>
</tr>
<tr>
<td>w/ KW + WVA</td>
<td>20.41</td>
<td>53.64</td>
<td>7.57</td>
</tr>
<tr>
<td>w/ KW + WVM</td>
<td>20.89</td>
<td>54.96</td>
<td>7.46</td>
</tr>
<tr>
<td>w/ KW + ST</td>
<td>20.70</td>
<td>54.50</td>
<td>7.78</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Type</th>
<th>Examples</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ori</td>
<td>what ’s the best plan to lose weight</td>
</tr>
<tr>
<td>Ref</td>
<td>what is a good diet to lose weight</td>
</tr>
<tr>
<td>Gen</td>
<td>what ’s the best way to slim down quickly</td>
</tr>
<tr>
<td>Ori</td>
<td>how should i control my emotion</td>
</tr>
<tr>
<td>Ref</td>
<td>how do i control anger and impulsive emotions</td>
</tr>
<tr>
<td>Gen</td>
<td>how do i control my anger</td>
</tr>
<tr>
<td>Ori</td>
<td>why do my dogs love to eat tuna fish</td>
</tr>
<tr>
<td>Ref</td>
<td>why do my dogs love eating tuna fish</td>
</tr>
<tr>
<td>Gen</td>
<td>why do some dogs like to eat raw tuna and raw fish</td>
</tr>
</tbody>
</table>
Examples: Paraphrase Generation

<table>
<thead>
<tr>
<th>Model</th>
<th>#parallel data</th>
<th>GLEU</th>
</tr>
</thead>
<tbody>
<tr>
<td>AMU</td>
<td>2.3M</td>
<td>44.85</td>
</tr>
<tr>
<td>CAMB-14</td>
<td>155k</td>
<td>46.04</td>
</tr>
<tr>
<td>MLE</td>
<td>720k</td>
<td>52.75</td>
</tr>
<tr>
<td>NRL</td>
<td>720k</td>
<td>53.98</td>
</tr>
<tr>
<td>CGMH</td>
<td>0</td>
<td>45.5</td>
</tr>
</tbody>
</table>

Ori	Even if we are failed, We have to try to get a new things.
Ref	Even if we all failed, we have to try to get new things.
Gen	Even if we are failing, We have to try to get some new things.
Ori	In the world oil price very high right now.
Ref	In today’s world, oil prices are very high right now.
Gen	In the world, oil prices are very high right now.
Figure 3: Overlap rates of CGMH and VAE for each word position of sentences.
The Markov Chain never mixes. We mainly use MH as SA.

Figure 2: Generation quality with corrupted initial states. At each situation, 0/5%/10%/100% of the words in initial sentences are randomly replaced with other words.
Simulated Annealing

- MH: Sampling from $\propto \exp\{s(x)\}$

- SA: Searching the optimum of $s(x)$
 - Define $p_\tau(x) \propto \exp\{s(x)/\tau\}$
 - Start from high temperature, but cool it down gradually
 - With $\tau \to 0$, $p_\tau(x) = 1$ if $x = \arg\max s(x)$, or 0 otherwise

$$p(\text{accept}|x_*,x_t,T) = \min\left(1, e^{\frac{f(x_*) - f(x_t)}{T}}\right)$$

$$T = \max(0, T_{\text{init}} - C \cdot t)$$

References

Thank you!

Q&A